Caerus: NIMBLE Task Scheduling for Serverless Analytics

Hong Zhang
UC Berkeley

Yupeng Tang
Yale University

Abstract

Serverless platforms facilitate transparent resource elasticity
and fine-grained billing, making them an attractive choice
for data analytics. We find that while server-centric analytics
frameworks typically optimize for job completion time (JCT),
resource utilization and isolation via inter-job scheduling poli-
cies, serverless analytics requires optimizing for JCT and cost
of execution instead, introducing a new scheduling problem.
We present Caerus, a task scheduler for serverless analytics
frameworks that employs a fine-grained NIMBLE scheduling
algorithm to solve this problem. NIMBLE efficiently pipelines
task executions within a job, minimizing execution cost while
being Pareto-optimal between cost and JCT for arbitrary an-
alytics jobs. To this end, NIMBLE models a wide range of
execution parameters — pipelineable and non-piplineable data
dependencies, data generation, consumption and processing
rates, etc. — to determine the ideal task launch times. Our eval-
uation results show that in practice, Caerus is able to achieve
both optimal cost and JCT for queries across a wide range of
analytics workloads.

1 Introduction

Serverless platforms [1-3] fulfill the promise of transparent
resource elasticity in the cloud [4-6]. Under the Function
as a Service (FaaS) serverless model, users decompose their
applications into short-lived stateless functions that read and
write data from an external storage service. The sub-second
startup latencies and virtually unlimited parallelism in FaaS
platforms permit fine-grained compute elasticity, while sub-
second billing granularities afford cost-efficiency.

These benefits have driven many recent efforts to port data
analytics applications to serverless platforms [7-18]. Ana-
Iytics jobs typically comprise multiple stages of execution
organized as directed acyclic graphs (DAGs) based on their
data dependencies, with each stage comprising several par-
allel tasks. While traditional server-centric deployments use
clusters provisioned with a fixed pool of storage and compute
resources to execute these jobs, serverless deployments imple-
ment tasks as serverless functions [7—13] that exchange state
via external storage [14, 15]. Since analytics workloads typ-
ically have widely varying resource needs over time, both
across and during job lifetimes [12, 14], server-centric de-
ployments can frequently suffer from resource under- or over-
provisioning [12, 14, 19,20], leading to resource wastage or
performance degradation, respectively. In contrast, serverless
compute [1-3] and storage [15,21-24] platforms facilitate
fine-grained scaling of resources to match application needs,
making them an attractive choice for data analytics [7-18].

Anurag Khandelwal
Yale University

Ton Stoica
UC Berkeley

Jingrong Chen
Duke University

We find that the shift from server-centric to serverless an-
alytics results in a shift in goals for schedulers in analytics
frameworks. Since the FaaS platforms manage allocation of
compute resources across jobs, schedulers need no longer be
concerned with the conventional goals of maximizing clus-
ter resource-utilization and enforcing fairness across jobs via
inter-job scheduling policies [25-28]. Instead, under the FaaS
billing model, schedulers must now consider the cost of each
job’s execution, which is proportional to the aggregated run-
times across its component tasks. This highlights the need for
inter-task scheduling policies for serverless analytics jobs to
minimize both execution cost and job completion time (JCT).

Unfortunately, task-level scheduling policies employed by
server-centric analytics today expose a hard-tradeoff between
cost and JCT in serverless platforms. Figure 1 shows a sim-
ple map-reduce job where reduce tasks consume and aggre-
gate data generated by map tasks. Traditional analytics frame-
works [29-32] typically employ one of the two following
extremes: (1) a lagy approach that launches a reduce task only
when all the map tasks have finished (Figure 1 (a)), and (2)
an eager approach that launches a reduce task as soon as any
map task produces data for it to consume (Figure 1 (b)).

Intuitively, the lazy approach is cost-efficient: since reduce
tasks waste no time waiting for upstream map tasks to gen-
erate data, individual task durations (which governs cost in
serverless settings) is always minimized. However, its JCT can
be far from optimal since there is no pipelining of map and
reduce task executions. The eager approach, on the other hand,
is JCT-efficient since it maximally pipelines the execution of
map and reduce tasks. However, its can introduce a much
higher cost: reduce tasks can waste a lot of time waiting for
upstream map tasks to generate data, which increases reduce
task durations and, consequently, execution cost. We discuss
this example further in §2, but note for now that this trade-off
between execution cost and JCT is even more extreme for
multi-stage jobs seen in production workloads [27,28].

Note that in an ideal solution (Figure 1 (c)), a task would be
launched late enough to minimize task durations (and there-
fore, execution cost), but early enough to minimize JCT. In
this work, we propose a NIMBLE scheduling algorithm that
builds on this intuition: at its core, NIMBLE scheduling com-
bines the cost-efficiency of lazy and JCT-efficiency of eager ap-
proaches and breaks the tradeoff between them (Figure 1 (d)),
by scheduling tasks to run at just the right time.

Designing such an optimal scheduling strategy, however,
is non-trivial. First, a precise description of the pipelinablity
across different job stages is crucial to determine the optimal
schedule — task-level DAGs typically used for representing

Figure 1: (a, b) Lazy and eager approaches expose a hard trade-off between JCT and cost; numbers within bars correspond to task runtimes. (c,
d) Fine-grained scheduling in serverless infrastructures provide opportunities to break this tradeoff with optimal scheduling strategies. The JCT
is simply the nish time of the last reduce task, while its cost is calculated as the aggregated durations of all its component tasks.

job executions in existing job schedulers are insuf cient. Even serverless analytics to minimize execution cost and JCT.
for the simple map-reduce example in Figure 1, while parts of We show that schedulers used in server-centric frameworks
reduce task execution can be pipelined with map tasks (orange expose a hard tradeoff between cost and JCT (82).
bars), some parts can only start after map stage nishes (black Design of a newNIMBLE scheduling algorithm, that
bars),e.g, when map output must be aggregated at the reduce launches each task in a job at just the right time to optimize
task before further processing. To this end, we develop a ne- bothcost and JCTNIMBLE employs a nevstep modelo
grainedstep dependency modéht captures data dependency capture sub-task level pipelinablity and data dependencies,
and pipelinablity information agub-taskgranularity (83). and guarantees cost optimality while bePayeto-optimal
Second, in contrast to the map-reduce example above, tasksbetween cost and JCT for any analytics job (84).
in general analytics jobs can have signi cantly more com- Design, implementation and evaluation of Caerus, a ne-
plex pipeline dependencies. Speci cally, a task can consume grained task-level scheduler for serverless analytics frame-
data from multiple upstream tasks, and tasks across the job's works that enablelsliMmBLE scheduling in practice (85, §6).
execution DAG may have cascading dependencies. Coupled o
with time-varying data generation and consumption rates, thi2 ~Motivation

makes identifying task launch times for JCT- and cost-ef cient|n this section, we provide a brief background on server-centric
job execution challenging. In fact, our analysis shows thaknd serverless analytics (§2.1). We then describe how server-
even with perfect models for all of the above constraints, it iSess analytics introduces a new task scheduling problem (§2.2)
impossiblefor a task scheduling algorithm to always be ableand new opportunities to address it (§2.3).
to optimize both execution cost and JCT for arbitrary analytics
jobs. Fortunately, we show i possible for a scheduling algo- 2-1 Background
rithm to be cost optimal, while beingareto-optimabetween Server-centric Analytics. Traditional server-centric deploy-
execution cost and JCT. We realize thiNmBLE, a schedul- ments for data analytics [30, 31,-335] operate atop a xed
ing algorithm that carefully models data produce and consumgool of compute and storage resouraes, clusters of pro-
rates across stages, computes launch times for tasks acradgsioned servers or pools of provisioned virtual machines
them based on both inter- and intra-task data dependenci¢¥Ms). Consequently, such deployments employ a cluster-
and schedules tasks greedily across dependent stages (84)wide job scheduler to ef ciently share the xed resource-pool
Finally, we incorporate th&lIMBLE algorithm into Caerus, among multiple jobs with three key goals: minimizing job run-
anew ne-grained task-level scheduler for serverless analytic§me, maximizing resource utilization and ensuring resource
frameworks (85). Caerus translates the theory developed fagolation (or fairness) across jobs. Given the resource demands
NIMBLE to practice, by extracting step dependencies frondf each job, the scheduler achieves all or a subset of goals via
user queries via a step annotation API, and estimadimggLE inter-job (i.e., job-granularity) scheduling policies [25-28].
algorithm inputs using a combination of job execution histories Within a job, the execution is broken down into a DAG
and information pro led at runtime. Caerus easily integratesof stages, each comprising multiple parallel tasks (see Fig-
with existing serverless analytics frameworks [11, 12, 14] —ure 1 for an example). A task scheduler launches tasks across
we implement Caerus in a prototype serverless SQL engindie compute resources allocated to the job. Tasks in a stage
built atop Locus [14], and evaluate its performance on AWSread their initial input from and write their nal output to
Lambda for a wide range of analytics workloads includingpersistent storage(g, HDFS [37]), while data exchange be-
TeraSort, TPC-DS and Big-Data Benchmark (§6). Our resultéween consecutive stages occurs over the netweogg §huf e,
show that in practice, Caerus optimizesth cost and JCT, broadcast, etc.). Existing frameworks typically apply one of
outperforming the lazy approach ly08-2:2 in JCT, and two popular approaches to decigddento launch tasks: (i)
eager approach t;21-1:57 in cost across these workloads. lazy (e.g, Spark [30]), which launches a task only whalh

In summary, we make three main contributions:

]) 10ne can add/remove VMs to scale VM clouds, but at coarse time granu-
» Formulation of a new task-level scheduling problem forlarities,e.g, resizing an AWS EMR cluster takes6 45 minutes [36].

tasks in upstream stages have completed, anddggr(e.g,
MapReduce Online [29]), which launches a task as soon as
anyoutput from its upstream stages is ready.

Serverless Analyticsln serverless platforms, users no longer
provision or manage resources: this is the cloud provider's
responsibility. Users simply pay for resources they use. Server-
less compute platforms {8] allocate and charge for compute
resources at function invocation granularity: invoking MOreri re 2:0ptimal schedule (left) and execution DAG (right) for
functions permits scaling up at a higher cost, and vice versa, multi-stage job. See §2.3 for details.
Existing approaches to serverless analytics deploy tas range bar) can be completely pipelined with the map stage
within a stage as serverless function invocations. Since clou 9 P Y PIp p stage.

providers disallow direct communications between serverles Owever, its Cost s signi cantly highe units), since reduce
functions [7,11, 14], data is exchanged between functions viéaSkS often wait for data to be generated by upstream map tasks,

external storage [8, 14, 15]. A job is charged for both func:"¢'€asing their runtime, and therefore, cost. : :
This tradeoff can be much more severe for multi-stage jobs.

tion execution and external storage, with the former typically) . . .
dominating the cot With sub-second granularity billingor Production traces from Microsoft [27, 28] show that jobs in

serverless functions, the job execution cost is proportional t6he|r workloads have 13 and 121 stages at 50th and 95th per-

the cumulative runtimes across all tasks of the job. centiles, making it likely for them to have far more opportu-
nities for pipelining tasks across stages. Ignoring these op-

2.2 Serverless Scheduling: A New Problem portunities €.g, following the lazy approach) would lead to
Since the cloud provider is responsible for resource managdCTs that are signi cantly longer than optimal. On the other
ment in serverless platforms, user goals in serverless analytid®nd, jobs can also have heavy skew in task runtimesAZ)0

are different from server-centric deployments. In particular— 10% of tasks take more than 1ahe median task dura-
while minimizing JCT is still a primary goal, metrics like re- tion in Microsoft's workloads [40]. Starting tasks across all
source utilization and isolation are now the onus of the cloudstages early to maximize pipelining.g, following the eager
provider. Instead, the user must now optimizetbstof each ~ approach) would force most downstream tasks to stall due to
job's execution, which is proportional to the cumulative taskslower upstream tasks, signi cantly increasing execution cost.

runtime as outlined in §2.1. This shift in goals exposes a new o Opportunities & Challenges

task-level scheduling problem for serverless analytics: o .
New opportunities in serverless schedulingServerless

Problem Statement:Given the execution plan for an an- frameworks provide new opportunities to break the hard trade-
alytics job comprising tasks with arbitrary dependencies, off between cost and JCT exposed by lazy and eager solutions
canwe nd a task-level schedule that optimizes for both job _ on-demand invocation of functions at ne-grained timescales
execution cost and JCT on a serverless platform? permits the design ohe-grained task-level schedulerig-

L - . ure 1 (c) shows the optimal schedule for the job in Figure 1 —
Limitations of existing approaches.As we saw in 81, the ex- . : S : ;

L . . with ne-grained scheduling, it is possible to achieve such a
isting server-centric lazy and eager task scheduling approaoh%‘?ﬁjhedule by launching each tasjust the right timemini

when applied for serverless analytics, expose a hard '[rade(_)mizing both cost (64 unitind JCT (19 units) (Figure 1 (d)).

between cost and JCT. Recall the job execution example in : ; I~
Moreover, these gains are likely to be even more signi cant

Figure 1, which comprises a map and a reduce stage, each with : . ; . .
. IN_production workloads comprising multi-stage jobs with
three tasks — each bar represents the execution of one tas . X
. . ; complex stage dependencies. For example, Figure 2 shows a
over time (numbers in bars show task runtimes).

The lazy approach (Figure 1 (a)) i®st-optimalin the multi-stage SQLjob which per_fqrmsjoin across three tables
serverless model, with a cost ® units’ — starting reduce (A,BandC) using shufe ha_sh join (SHJ) algorithm [43]. The
tasks any later would not affect their runtime (and thereforegure shows the job's exegutlon pllan as a DAG of stages on the
cost), while starting them sooner can cause them to stall f fight, and the corresponding optimal task schedule on the left.

) -T'he optimal schedule can ef ciently pipeline all the ve stages
more data to be generated by upstream map tasks, Increasiinis multi-stage join example, resulting in much higher gains
cost. However, the lazy approach also leads to high BIT (gel Pie, g gherg

units), since it does not pipeline the execution of map and” JCT and cost than for simple two stages map-reduce jobs.

reduce tasks at all. Similarly, eager scheduling (Figure 1 (b)) i€hallenges.Figure 2 also indicates that calculating the opti-
JCT-optimal(19 units) since the rst part of reduce execution mal launch time for each task is non-trivial due to a number of
5 o _ reasons. First, a task may include multiple parts, where each
Cost of AWS Lambda execution is$0:20/hour [38], while Amazon S3

storage is $0:02/GB/month [39], with no data transfer cost between them. part may or may not be plpellneable with some part of one of

3The cost is computed as the cumulative sum of the runtimes of the taskS Upstream stages. In Figure 2 (left), Stage 3 is composed of
in the job, and assuming unit cost per unit runtime. two parts. The rst part, which reads Table B from Stage 2

and uses it to build a hash table, can be pipelined with Stage 2

execution. The second part, which reads Table A from Stage

1 and performs online join with the hash table constructed in

the rst part, can pipelined with Stage 1 execution. Second,

the runtime of one task depends on the processing rate of all

tasks in its previous stage, and these dependencies cascade to

upstream stages. In Figure 2, the execution of Stage 5 depends

on Stage 3 and Stage 4, and Stage 4 is further determined

by Stage 1 and Stage 2. As such, the rst challenge lies in

identifying parts of the execution that can be pipelined, and

the dependencies between such pipelinable components — Wyure 3:Stagevs.step dependency modeor (a) map-reduce job,
address this in 83. The second challenge lies in using thiand (b) SQL query that joins two tables A and B after applying a
information to determine ideal launch times for tasks in jobsmap function on each. In the step model, red arrows show depen-

with complex DAGs, which we address in §4. dencies across steps that can be pipelined, while black arrows show

. . dependencies that prevent pipelining. See 83 for details.
Why serverless? Intuitively, the ne-grained task-level

scheduling shown in Figures 1 (c) and 2 can also be extendegPnsider the map-reduce example from Figure 3 (a, right)

to server-centric settings to optimize average JCT. MoreoveY/here the reduce stage (and therefore, all tasks in the stage)
the reduction in per-job resource usage (i.e., cost in servehas two distinct parts, shown as orange and black boxes. While
less settings) enabled by this approach may improve resourdB® rstpart ¢.s1), where reduce tasks read map data, can be
utilization via bin-packing more jobs onto the same numbePiPelined with map executiomt.s1), the second part.§2),

of servers. However, while cost improvements in serverles¥here the reduce tasks aggregate and output data, cannot —
analytics are obvious, achieving improvements in resourc&Nc€ nal aggregation can only occur after all map data has
utilizations with theoretical guarantees in server-centric dg2een read. Clearly, stage dependencies, shown in Figure 3 (a,
ployments is not straightforward, since it is unclear how thd€ft), cannot capture such ne-grained information regarding
resources saved by delaying task launch times can be utilizégjPelineable and non-pipelineable components of task, nor
by other jobs. Speci cally, the optimal in Figures 1 (c) and 2 capture the data dgp_endenues_between t_hem. This information
is likely to create staggered task launch times across stages igcrucial in determlnlng the optimal start tl_me for reduce tasks
optimizeeach individuajob, and they may not be optimal for — €arly enough to maximally overlaps1 with m.s1, but not
bin-packingacrossiobs. Thus, while the clear decoupling from 00 €arly, since pipelinings2 with m.s1is impossible.

inter-job resource allocation ensures cost and JCT-optimalitylodeling pipeline dependencies usingteps To precisely
extending it to server-centric settings for optimal JCT and remodel how stages can be pipelined, we re ne the stage model
source utilization requires a careful co-design of inter- andnto a ne-grained step model to precisely describe how job ex-

intra-job scheduling. We leave this study to future work. ecution can be pipelined across stages. In our model, the stages
are decomposed into one or mateps which are separated
3 Step Dependency Model by pipeline breakersvithin the stage — operators that pro-

duce their rst output only after all input have been processed.
As discussed above, a key challenge in identifying ideal tasRipeline breakers create barriers in execution, demarcating
launch times for a job is modeling pipelineable and nonstretches of execution that cannot be pipelined with each other.
pipelineable dependencies across tasks. In this section, W such, steps within a stage must be executed sequentially,
discuss how we model such dependencies and the ow of datsince pipeline breakers prevent subsequent steps from starting
across them, using a nestep dependency mod&Ve employ before its upstream step nishes. Across stages, however, steps
this model to design ouXIMBLE scheduling algorithm in 84. with data dependencies between them can be pipelined. As a
concrete example, consider the step model for the map-reduce
job in Figure 3 (a, right) —m.s1 corresponds to the single
'step in map stage, whilesl andr.s2 correspond to two
cgfeps in the reduce stage, with a pipeline breaker separating
§hem. The step.s1 which consumes data can be pipelined
with the upstream stem.s1 in the map stage that generates
the data. We refer to such cross-stage pipelineable step pairs

Stage dependencies in traditional analyticsAs outlined in

§2.1, job execution in traditional analytics frameworks [27, 28
30, 34] is represented as a DAG, where nodes are executi
stageqcomprised of multiple parallel tasks) and edges denot
data dependencidsetween them. Figure 3 (a, left) shows
the DAG for the map-reduce example from Figure 1, while

Figure 3 (b, left) shows a SQL query that performs Sthe(e.g, (m.s1, r.s1)) asparent-childstep pairs. Note that the

hash join (SHJ) on tables generated by two map stages. while above description focuses on the decomposition of a

Unfortunately, the stage model is not ne-grained enoughstage into steps, each task within the stage shares the same
to capture the information required to determine the ideal

launch times for tasks in serverless analytics jobs. To see why, #This is the same example as the one depicted in Figure 1.

step-level decomposition — we will use the term step to refer
to parts of a stage or its tasks interchangeably and clarify the
distinction whenever needed.
Figure 3 (b) contrasts the step and stage DAGs for a simple
join query. Each of the two map stages comprise a single step,
while the hash join stage is divided into two steps. The step
j-s1 reads the left table (Table A generatedrng.sl) to
create a hash table of unique entries, while §& reads
the right table (Table B generated by2.s1), joins it with Figure 4:Optimal launch time for a two-stage map-reduce job.
the hash table and writes the output. Each of the two step@) The total volume of data to be consumed by the reducer stgp
can be pipelined with their parent steps (the two map stagedR, = 6) is the area under the produce ratg(()) curve. The lazy
but these two steps have to be executed sequentially withigpproach allows us to compute the optimal task runtidye)(as
the join stage, since the hash table must be created before tR&c = 2. (b) The optimal task nish timet; = 3) is obtained by
second join step can proceed (pipeline-breaker). emulating the eager approachz Wh(_are the nish time is the maximum
We discuss the details of how the step dependencies can l?; P=rc (= 2) and the map nish timé (= 3). () The optimal

. . unch time g = 1) is computed as the difference of the optimal
gxtracted from user code in 85, but note for now that this mode hish time and optimal duration. See §4.1 for details.

e
across a wide range of evaluated analytics applications (86 .43'1 NIMBLE for Two-stage Map-Reduce

Consider the step model for the simple two-stage map-reduce

Modeling ow of data across stepsWe now describe param- o in Figure 3 (a). Note that the JCT of the job is the same as
eters that are used to model the ow of data across steps in th@e nish time of the last reducer, and the total cost of the job is
step dependency model. While we discuss how these are eslipportional to the aggregated duration of all map and reduce
mated in §5, we note for now that these parameters are used gsks. As such, optimizing for the nish time and execution
inputs to theNIMBLE algorithm. Consider a stage comprising duration of individual tasks also ensures optimality for JCT.
nstepssl-sn, some of which may have a parent step, while gince map tasks do not have any upstream dependencies,
some may not. If stepi receives data from a parent step, thenthejr execution duration is independent of their launch times,
(1) parentproduce rate(rp) is the aggregated data output rate and only depends on how fast they can read data from per-
across all tasks of its parent step (referred tprasiuce rate sjstent storage and process it. Meanwhile, optimal nish time
for brevity); and (2)full consume ratérc) is the rate at which for map tasks can be achieved by launching them as early
data can be read and processed by staphen there is suf- 55 possible (at = 0). On the other hand, due to the parent-
cient data for it to consume. If stegp does not have a parent ¢piq step dependency between the map and reduce tasks (Fig-
step, then its execution duratiolg is independent of when e 3 (top)), thelata consumptiom r.s1 step of reduce tasks
the task is launched, allowing us to modegl as a constant. ¢3n pe pipelined with thdata generatiorin stepm.s1 of map

Since the produce rate is determined by the aggregate datgasks for minimizing reduce task nish times and execution
output rate across all upstream tasks, each with potentially ditturations. In particular, a reduce task should be launched early
ferent start and end times, we modgls an arbitrary function enough to ensunes1 overlaps withm.s1 as much as possi-
of timet. Note that the cumulative area under thét) curve ple to minimize nish time, but late enough to ensure that it
corresponds to the total input data for the step under considefan always consume data at full rate throughout its execution
ation; we denote this &. The full consume rate, on the other without stalling, to optimize cost. OMIMBLE scheduling
hand, is tied to how fast the step can read and process daggpproach can always nd such a “perfect” launch time using
and we found it to be stable throughout a the step's executiothe following three steps (Figure 4):
in our evaluation (86), allowing us to modglas a constant. . . .
Note that the parent step may not always produce data as fa§fep 1: Calculate optimal task duration D . Since step

as it can be consumed, i.e., thetual consume raté »c) for r.s2 can only start after.s1 nishes, the optimal duration
the step may be lower thap. ac D of a reduce task ig; + ds,, whered,; andd,, are the

optimal durations of stepssl andr.s2 respectively. Note
4 NIMBLE Scheduling that sincer.s2 does not have a parent step, its duration is

Armed with the step dependency model, we are now ready t'ﬁ;dependent of when the reduce task is scheduled. As such,

describe ouNIMBLE scheduling algorithmiNIMBLE builds e optimal duratioD depends only on stesl .
on the intuition outlined in 82.3, and combines the cost- Recall from §2.2 that the lazy approach always ensures

optimality of lazy and JCT-optimality of eager approachesomi_mal duration for reduce tasks — since the entire input is
to schedule tasks in an analytics job to rurjuat the right available before the reducer starts1 can always consume

time. We rst describeNiMBLE scheduling for a simple two- the input data at consume ratewithout ever stalling. As such,

stage map-reduce job (84.1), and then extend it to genergk! is simpIyP_:rc, wherePis th? total amount of input data
analytics jobs with arbitrary execution DAGs (§4.2). orr.sl . In Figure 4 (a)P = 6 is the area under the curve

rp(t), which givesdg; = 3. consume data at a rate no faster thgn

Note that the data produced aftérP; o, is independent of
the reduce task’s launch time. This implies that regardless of
how early the task is launched, no solution could have achieved
optimal nish timet,, for the step.s1 . However, this con-
tradicts with the fact that the eager solution can achieve the
optimal nish time by launching the task &t 0. Therefore,

We leverage the eager strategy of starting the reduce task 8lr initial assumption must have been false: a reduce task that

t= O.to compute the optimal step nish timgs; — mtwuvgly, . _is started afl; does nish executing its rst stepr.s1 att.g;.
starting the task any sooner cannot reduce the step nish time . _ . . 5S-
ProvingT; = T, D results in optimal task duration is

any further. Note thgt since allthe map ta;ks are startid 8 then trivial: since step.s1 nishes att,¢, with start timeT,
the produce ratey is non-increasing in time. Consequently, ., corresponding duratioh t,., will always bed,,
€S si*

if the full consume rate. of the reduce task is lower than the))
Note that thel for different reduce tasks may be different,

averageproduce rate, then the nish time of the step will be :
bottlenecked byg, i.e.,t,o; = P=rc. On the other hand, if; since the produce ratg to different reduce tasks may vary

is higher than the average produce rate, the bottleneck shiff€-9- due to data skew). Recall that the nish time of the job is

torp, and the reduce task can only nish when the map taskéhe same as the nish time of the last reduce task, and the total
nish generating data at time,. Figure 4 (b) shows the latter cost of the job is proportional to the aggregated duration of all

scenario, where; = 3is higher than the average produce ratet@sks. As such, Theorem 4.1 shows that we can simultaneously
(= 2), and thereforé,; = tn= 3 achieve both optimal cost and nish time for the entire job, as
1 ,S -

long as each reduce task is optimal in duration and nish time,
Step 3: Calculate optimal launch timeTs. We nd that je. islaunched af .
launching the reduce task & = T, D , whereD and .
T, are computed via the lazy (Step 1) and eager (Step 2{}'2 NIMBLE for Gen_eral Analytics o
approaches, respectively, ensure that the task is optimal i¥e now extend our analysis to general analytics jobs. We rst

both execution duration and nish time. This is shown in Fig-outline the steps in computing the optimal launch time for
ure 4 (c), where starting the reduce tasRat 3 2= len- tasks in jobs with arbitrary execution DAGs, and then describe

sures optimal duratior) = 2), aswellas nishtime{, = 3). how NiMBLE scheduling can be generalized to such DAGs.

At rst glance, this may seem obvious, sinBe andT, al- 4.2.1 Optimal launch time for individual tasks

ready correspond to optimal task duration and nish time,general analytics jobs with arbitrary execution DAGs intro-
respectively. But we note that sine andT, were computed gyce two main challenges in determining the optimal task
for two separate approaches, it is not obvious if an approacfynch time as de ned in §4.1. First, unlike two-stage map-
that starts the task @ = T, D _will always ensure the eqyce jobs, the start times of a step's parent steps need not
task takes exactlfp time to nish. Fortunately, for two-stage start att = 0 and can be staggered in time, as shown in Fig-
map-reduce jobs, we have the following theorem: ure 5 (a). This breaks our assumption of a nonincreasj(t)
Theorem 4.1 For a reduce task, we can always achieve bothfom §4.1, and necessitates a more nuanced treatment of the
optimal execution duration and nish time by launching it at eager approach to compute the optimal task nish time.

timeTs = To D, whereT, is the optimal nish time and® Second, unlike two-stage map-reduce jobs, general analytics
is the optimal duration computed using Steps 1 and 2 abovejgps, 4 stage may contain multiple parent-child step paigs,
Proof Since the duration of staps2 is independent of when the join stage in Figure 3 has two steps, and each step has a
the reduce task is scheduled, we only need to prove the opparent step from a different map stage. For such dependencies,

Step 2: Calculate optimal nish time T, . The optimal nish
time T, for a reduce task is simply; + dg, Wheret,, is
the optimal nish time ofr.s1 . Again, since duratiods, is
independent of when the task is launch&gddepends only on
when step.s1 nishes.

mality of nish time and duration for stepsl . we nd that optimally overlapping each parent-child step pair
We rst show that we can always achieve optimal nish is insuf cient to ensure optimal task duration and nish time.
timet,, if we launch the reduce task at tifie = T, D . Speci cally, the optimal task launch time depends not only on

We prove this by contradiction: assume that a reduce task thalheinter-stagedependency between parent-child step pairs, but
is started af; does not nish executing its rst stepsl at also on théntra-stagedependency between steps in the same
tes1- This must be because at some time p@ifl ;t.s,], the stage. Figure 5 (b, left) shows a join example where the optimal
task was unable to consume data at full consumergai®e launch for each step in the task is computed independently.
denote the last time instant where this was trué’dsote that Although each child step is optimally pipelined with its parent,
the data produced until timé (say,P 0) must be less than the gap between their execution corresponds to time where
the data that can be consumed by tithat full consume rate no useful work is done, resulting in sub-optimal task duration
re,i.e, B o< (t° Tg) re Since the total amount of data and, therefore, cost of execution. Figure 5 (b, right) shows how
produced i = dg; re, the data producealfter t®must be this can be avoided byeferringthe start time of the rst step.
Psto=P B 10> (tes t9 re, and the reduce task will We exploit the above insights to exteNdvBLE scheduling
take more time thait,; t9 to consume it (since it can approach from §4.1 to general analytics jobs. We consider the

Figure 5:NimBLE scheduling for general analytics (84.2)a) Unlike two-stage map-reduce, the produce rate for a task may not be
nonincreasing, since the parent step in different tasks can have different start times. (b) Unlike two-stage map-reduce, tasks may have multiple
pipelineable dependencies, which requires careful handling to ensure optimal task duration. See §4.2.1 for details.

general case where a task comprisastepssl-sn, and make For each;, we can calculat&(t;) based or§(t; 1), rac(ti 1)

two assumptions to simplify our analysis: (i) each step in aandrp(ti 1), andrac(tj) based on Equation 1. The time stgt
task has at most one parent step, and (ii) steps within a task avehere the cumulative data consumed so far egbalke total
executed sequentially in a xed order. Both assumptions holdnput data for the step, corresponds to the optimal nish time;
for a wide range of analytics jobs, including the join examplewe formally prove optimality in Appendix A.

above, and all of our evaluated workloads (86). Similar to two- Unlike the two-stage map-reduce job in §4.1, we have to
stage map-reduce (84.1), the optimal launch tilndor atask consider one more constraint — st&an only start after step

in the execution DAG is calculated in three steps: si-1 has nished, i.e., the nish time of stepis no less than
tesi-1 di- Let the optimal step nish time fosi as computed

Step 1: Calculate optimal task durationD . The optimal : : .
P u - urad bt above (which only considers its parent step)g;e, then the

task duratiorD is simply the sum of individual optimal step

durationsdy, 1 i n. As in §4.1, the duration for steps 2ctual optpmal nish time of stepis:
without a parent is independent of task launch time, while the _ max(tdsi;tesis + ds) if si has a parent @
optimal duration for steps with a parent is computed using &* tegiat Ui otherwise

the lazy apprciach, i.eP,:_rC for the_corresponding step. I we compute the optimal task nish time by iteratively calculat-
Figure 5 ()P = 8 andrc = 2, sodg; = 4. ing the optimal nish time for each stegl sn. Figure 5 (b)

Step 2: Calculate optimal nish time T, . SinceT, is bound ~ shows an (gxample for this computation: the task nish time
by the nish time of the last stepn, we rst compute the opti- equals thegg, (= 5), sinceteg, + dg, (= 1+ 2) is smaller.

mal nish time of a step as computed by the eager approacigiep 3: Calculate optimal launch timeT; . As in §4.1, the
similar to 84.1. As noted earlier, however, unlike two—stageoptima| launch time is computed @ = T, D . Consider
map-reduce where the parent step across all the map tasks stajt example in Figure 5 (b): the optimal launch time is calcu-
attimet = 0, the parent step across different tasks in a genergheq asl, =T, D (=5 3)forthe two steps. Compared
D_AG may start and end at arbitrary times. This is depicted in, Figure 5 (b, left), doing so automatically delays the rst step
Figure 5 (a) where the parent step across two upstream tasks,q removes the gap (Figure 5 (b, right)).

start at time = 2, w_hile the third starts &t= 0. Qonsequently, Indeed, Theorem 4.1 extends to general analytics jobs:
the produce rate is no longer non-increasing. As such, theneorem 4.2 For a task in an analytics job with an arbitrary
optimal step nish time (based on the eager approach) cagyecution DAG, given the execution (produce rate) of all its
only be determined by tracking the actual consumerate parent steps, we can always achieve both optimal execution
over time. In the examples is bound byrp, (= 1) between 4, ration and nish time by launching it af, = T, D,
t=0 2 lowerthanrp (= 3) and bound by. (= 2) between \ypereT, is the optimal nish time and is the optimal
t=2 4 andequalste; (= 2) betweert = 4 Stoclearthe qgyration computed using Steps 1 and 2 above.

surplus data generated between2 4. As such, the nish \ye defer the formal proof to Appendix A, but note here that
time yielded by the eager approach is 5. _ ~ itemploys induction on the number of steps: we assume the
. In order to generalize the above example, we dl_scretlze timgtatement holds for a task with 1 steps, and use Theorem 4.1
into slotsty, to, ..., tm, such that the produce rate is constantyg show that it still holds on adding one more step.

within a time slot. We introduce a new functi&;) to identify 4.2.2 Optimal schedule for the entire job

time slots where the step accumulates surplus data{t. = Algorithm 1 showsNIMBLE scheduling for the entire job

O.'f allthe input data.produ.ced untilhas been consumed by_ based on Theorem 4.2. Stages in the job are scheduled itera-
time tj, and1 otherwise. It is easy to see that when there is

_ tively based on their dependencies: a stage is scheduled when
no surplus dataq(t;) = 0), the actual consume ratec(t;) all of its parent stages in the execution DAG have been sched-
is upper-bounded by the produce ragétj). When there is P 9

surplus datag(t)) = 1), the actual consume rate increases tOuled. For each task within a scheduled stage, we rst calculate

the full consume ratgrf = ro) to clear the surplus. Formall the produce rate from its parent stages, and then calculate its
t(e' cm e pIS. Y. optimal launch time as described above.

min(rp(t);re) if S(t) =0) Algorithm 1 ensures thatach taskachieves optimal dura-

lac(ti) =
ac(t) re if S(t)=1 tion and nish time given its parent execution (due to Theo-

Algorithm 1 NIMBLE scheduling for a job negative result abovéyIMBLE scheduling ef ciently navi-

Launch all stages with no parent stages. gates the cost-JCT tradeoff for jobs with arbitrary DAGSs:
U Setof unscheduled stages Theorem 4.3 For a job with arbitrary DAG ,NIMBLE schedul-
while U6 0do ing in Algorithm 1 is (1) optimal in cost; and (2) Pareto-

for each stag&2 U, whose parent stages are schedded optimal between cost and JCT.

for each task in stag8do . Proof We rst consider cost-optimality: since Algorithm 1
Calculater for each using parent stage schedules

CalculateT, andD based orrp andre of each step ensures optimal execution durati(_)n for each task in a_job (The-
CalculateT, =T, D orem 4.2), the agg_regated dgratlon across all ta_sks in the job,
and therefore, the job execution cost, is also optimal.

Since the cost is always optimal, for Pareto-optimality we
only need to show that no solution can further reduce job nish
time without also increasing its cost. Our proof builds on the
intuition developed for the example in Figure 6. First, we note
that delaying the start time beyorid for any task cannot
Figure 6:Example of a job that cannot achieve both (a) optimal reducg its complet.ion time;. the only possibility to reduce JCT
cost and (b) nish time simultaneously. Each stage comprises a is to pick a start time earlier thah . As per Theorem 4.2,

single task/step. Stage 2 has a produce rate of 1 and consume rate3frting a tasI.< any sooner than must increasf'e its duration.
3. Stage 3 has a produce rate of 3 and consume rate of 1. Moreover, doing so will not reduce the duration of any other

task, since they are already optimal. Thus, even if starting
%he task beford did improve JCT, it would only do so by

_rltggnv\e/llsode?hsutrtioptlmal ms.h ttllTe ?nd th)St]:‘or_tbbatlre_th increasing the aggregate duration across all tasks in the job,
job? We nd that the answer is in the af rmative for jobs with b erefore. its cost.

DAGs of depth two, including the map-reduce and SQL jobs : . . .
P inciicing p-rend QL As an interesting aside, we note that for the example in

in Fig 3. Intuitively, since the stages in the rst level of the _.)

DAG do not have parent steps, their optimal start time=s0. F|ggre 6 we face this hard tradeoff between JCT and cost

As such, given the execution of the stages in the rst IeVeloptlmallty because Stage 3 has a larger duration compared to
; Stage 2. Instead, if Stage 3 had a duratiof:5f starting Stage

Theorem 4.2 ensures optimal duration and nish time for the2 hah= 2 (at hiah Id h d
stages in the second level of the DAG. any sooner than= 2 (at higher cost) would not have made

o . . stage 3 nish any faster. In practice, downstream stages often
Unfortunately, for general analytics jobs with arbitrary . .
L2 . have a shorter duration compared to the upstream stages, since
DAGs, the answer is in the negative. In fact, we nd that 2
. S . . frequently used operators such as reduce, Iter and join often
for some jobs, it iSmpossible¢o nd a schedule that achieves

both cost and JCT optimality. The key insight behind this>'9"" cantly reduce the output data yolume to dqwnstream
S . stages. In such casd$iMBLE can achieve both optimal cost

observation is that the launch time of a task affects not onl : : .

. . . . _-and JCT simultaneously — evaluation results on a wide range

itself, but also its downstream tasks — the optimal launch tlmeof analvtics iobs in §6 validate this argument

for one task (Theorem 4.2) may negatively affect tasks in its Yies | 9 '

downstream. We illustrate this with the example in Figure 65 Design Details
that shows a job with three stages, each with only one step aq this section, we describe how we incorporateMsLE

one task. Stage 2 has a produce rate of 1 and consume r"’éé_iweduling into Caerus, a new ne-grained task-level scheduler

of 3. Stage 3 has a produce .rate of 3 "’?”d consume rate Off%i'r serverless analytics frameworks. We rst describe Caerus
The arrows denote parent-child step pairs. Figure 6 (a) show esign components and application work ow (§5.1), and then

NIMBLE approach, which greedily optimizes the duration and D : :
nish time from Stage 1-3 based on the produce rate of eacﬁescnbe Its implementation details (85.2).

stage's parent steps; the end-to-end execution time of the entie.1 ~ Caerus System

job is 5, while its cost is7. Figure 6 (b) shows an alternative We now describe Caerus system components and how they
strategy, that launches tasks across all three stages (Stage 1t{3pbgether (Figure 7). Before describing these components,
att = 0. This increases the duration of Stage 2 frbro 3, we rst brie y summarize the design employed by existing
and consequently, the cost of execution of the job fibilm9. serverless analytics frameworks.

However, doing so also reduces the produce rate for Stagelf?’rimer on serverless analytics frameworksRecent propos-
to 1, allowing Stage 3 be completely pipelined with Stage 2. y prop

o o als on serverless analytics frameworks [8, 12, 14] share similar
As such, the nish time of the entire job reduces frérto 3.) . " . .
Note that no schedule can achieve both a JCF arid a cost designs. Figure 7 depicts this design (adapted from [12]). The

of 7, since optimal JCT can only be achieved if Stage 2 and grantwerwordk tak: ds ?si mp:)utt\z Jo: etxecutlonr:j ?klmann(lrgn'?)Gg t??t K
are started d@t= 0, which ensures a sub-optimal cost. captures dependencies between stages a € humber oTtasks

within each stage. It uses this to generate code for the individ-
Cost optimality & cost-JCT Pareto-optimality Despite the ual tasks, compiles it and packages it with necessary dependen-

cally pro les and reports such metadata to the input estimator.
Our runtime pro ler is incorporated into the function runtime
in serverless frameworks [8] that is shared across all tasks.

Caerus work ow. For each job, the step-model builder rst
extracts the step model from code generator or directly from
the annotated function code. The input estimator maintains
estimates of algorithm inputsy, rc anddg; values) for each

step based on prior job runs. ThemBLE scheduling module

cies. To execute a job, a scheduler launches tasks as serverlgggn calculates launch time based on both the algorithm inputs
functions and monitors their progress. Pywren [8, 14] is simiand step model, and launches each task at the calculated time.
lar, but omits the code-generation and compilation steps andaunched tasks periodically report their progress to the input

directly takes task code and execution plan as input. estimator via the runtime pro ler, which is leveraged to re ne
Caerus integrates with these analytics frameworks by simplyhe input estimates for future runs.

replacing their task-level scheduler, and taking over the task . . .
launching and monitoring responsibilities. We next describd-a€rus scalability. Caerus's scheduling performance scales

the major components of Caerus scheduler (Figure 7) in detali’€!l With the number of available CPU cores due to two main
reasons. First, tasks within a stage have independent launch

The step model builderis responsible for extracting the times, which permits parallel calculation and launching. Sec-
‘ne-grained step dependency model théMBLE schedul- ond, while the number of online update messages from run-
ing expects, either from the job's execution plan or the usetime pro ler grows linearly with the number of tasks, it can be

code. If the input is user code (e.g., a Python function in Pyserved in parallel by partitioning input estimates for different
Wren [8,14]), Caerus provides a step annotation API that usefgsks across different CPU cores.

can employ to specify the step information Caerus expects:))
Fault-tolerance. Caerus handles task failures by restarting
s = createStep() # Create a step object

” them. For controller fault-tolerance, Caerus relies on tradi-
s.start() # Notify system about step start
s.end() # Notify system about step end tional primary-backup mechanisms [30, 48]. The backup main-
s.addParent(stagelD, steplD) # Specify parent step tains consistent copies of the job's step model, launched and

ueued tasks, and runtime pro led information from prior job

If the query code is generated by a CodeGenerator based . .
the execution plan (as in Starling [12]). the step dependencie% ns. During recovery, Caerus fetches this metadata from the

; ! ackup and resumes scheduling queued tasks usingL¥ .
can be extracted during code generation. Most popular querg)
execution enginese(g, SparkSQL) generate code based on9.2 Caerus Implementation
the Volcano [44] iterator oWholeStageCodege45] model, Our Caerus prototype is implemented atop Pywren [8], a
which fuses operators as much as possible to maximize pipeliserverless data analytics engine that runs on AWS Lambda [1].
ing. As such, the generated code in such models is alreadye use Amazon S3 [21] for persistent data storage and
composed of blocks separated by pipeline breakers, whesffy [24] for intermediate data storage.
each block corresponds exactly to a step in our step mod

- QL analytics with Caerus. We implement a SQL query
Caerus augments the CodeGenerator to additionally generafe . iion framework atop Locus to highlight the bene t for

step-annotations at the start and end of blocks, along with ste : :
dependencies, using the step annotation API outlined above, aerus scheduling for SQL analytics workloads. We employ
' Apache Spark's query planner to generate the query plan from
Input estimator & runtime proler. Recall from 83 that the original SQL query, and then use Pandas to implement the
NIMBLE scheduling relies on estimates of step produce rat&QL operators. Pandas' current implementation for SQL op-
(rp) and consume rated) for steps with parents, and duration erators (likeJOINandGROUPB&mploys the lazy approach,
(dg;) for steps without parents, to make scheduling decisiong.g, for the join example in Figure 3 (bottom), Pandas would
To facilitate accurate estimates, we leverage the observatiamly start theJOIN operation after all the data in both input
that task and job-level statistics can be accurately estimated kigbles are ready. We therefore modify the operator implemen-
tracking pro led information from prior job runs, since such tations in Pandas to conform to the step dependency model
analytics jobs in production workloads tend to be recurringrequired by NMBLE scheduling.
in nature [2628, 46, 47]. In particular, the input estimator As a concrete example consider the implementation of the
in Caerus is responsible for collecting information for prior SQL job in Figure 3 (bottom) in Caerus. For the rst two
executions for each job (i.e., the job history) and maintainingnap stages, each task keeps reading input data from S3. After
estimates for various,, rc anddg; values. reading each small chunk of input data, it performs the map
For higher accuracy, the input estimator continuously re nesfunction, and partitions the output data iaunksbased on
its rp, rc anddy; estimates based on realtime task progress. Tdey hashes. To implement shuf e, we maintain a FIFO queue
facilitate this, a runtime pro ler (similar to [27,40]) periodi- for each join task in the intermediate storage. Once an output

Figure 7:Caerus system components & work ow (85.1).

chunk is ready, the map task pushes it to the corresponding Cazy | Eager | NWBLE

join task's queue. Note that a join task receives data from two JCT(s) | 124 105 107

shuf es (i.e., from map1 and map2). As such, each join task Cost(s) | 10776 | 15756 | 11169

has two receiver queues: queue A (for data frahsl) and ~ Table 1: Comparison of NIMBLE against lazy and eager ap-
queue B (or data fronm2.s1). After being launched, each Proaches for TeraSort on al00GB dataset (86.1).

jomn task fetch(_as datg from queue A and builds t_he ha}Sh tablﬁew scheduler for serverless analytics, our evaluation focuses
mcrgmentally in stepsl . Once the hash-table is _bl_JlIt, the on comparing scheduling approaches on a common analyt-
stepj.s2 fetche_s data from_queue B, performs ajom_of theics framework as opposed to comparing different analytics
fetched data with the data in the hash-table, and writes thﬁameworks As noted in §5, Caerus can integrate with any
output to persistent storage. of existing serverless analytics frameworks [8,11,12, 14] and
Identifying pipeline-breakers. In Caerus, we implement all inherit their speci ¢ performance optimizations.

commonly used SQL operatore.lg, FALTE,? ‘IJOIN’ dSORI'T Performance metrics.We focus on two main metrics: JCT
,GROUP Baggregateg, etc.), emp qyt e widely-used Vo €aNO,3nd cost of job execution. The former is measured as the time
iterator model [44] to identify pipeline-breakers, and Specifyj,oyeen job's rst task's launch time to the last task's nish

trf%?gg th%sét_ap(;inno;atio:: APL As S!JCh’ Caerus (l:an "Whe. For the latter, we measure the aggregated duration across
a -DS and Big-data benchmark queries — we evaluate g, (4qks in the job as a proxy for cost. We avoid reporting

representative subset in §6. precise dollar values, since these depend on the cloud provider

Accurate parameter estimations.NIMBLE scheduling re- and can change with market economics.

lies on accurate estimation of various parameteysr{, di),

which can be complicated due unpredictable \tg{riatior?s stem6-'1 TeraSort

ming from a range of sources. Fortunately, we found a mal/e port the TeraSort algorithm [49] implementation from

jority of these sources had little to no variation across AwSkocus [14] to our framework for sorting large datasets. The

Lambda executions, including (1) processing time for vari&lgorithm operates in two stages: a partition stage that range

ous operators; (2) function launch tirfiesind (3) function partitions input data to intermediate storage, and a merge stage

ingress/egress bandwidth to intermediate storage. that reads these part?tions, merges, sorts and writes them out as
However, we did observe unpredictable performance varig2UtPut. The sort job in our experiments ud@®lambdas for

tions for Amazon S3 reads and writes, particularly with larger®0th the map and reduce stage to 48@GB of data generated

number of parallel tasks (100). To minimize parameter esti- USing the Sort benchmark tool [S0].

mation errors caused by these variations, we adopt a straggler Table 1 compares the results of eager, lazy BndsLE

mitigation technique for S3 reads and writes similar to [12] —Scheduling approaches for the sort job. We observe little data

Caerus tasks proactively establishes a new connection to Skew for the TeraSort benchmark during both the partition

when a transfer takes longer than expected, and uses the #&d merge stages, and the ideal launch time for merge tasks

sponse from whichever connection performs the read or writédenti ed by NiMBLE scheduling is roughly in the middle of

rst. Moreover, we found larger S3 reads/writes to have unthe execution for partition stage. As suhMmBLE achieves

predictable durations, so we break them into multiple smalled:16 lower job completion time compared to the lazy scheme,

chunks. We show in §6 how these modi cations ensure negligil:41 lower cost than the eager approach. The results validate

ble estimations errors for a wide range of evaluated workload®Ur analysis in 84, thalimBLE scheduling can achieve near-
optimal JCT and cost simultaneously for two stage map-reduce

6 Evaluation jobs in practice € 4%in Table 1).NIMBLE's slight departure

We now evaluate Caerus implementation (§5.2) using three aff°™ oPtimal is due to delays in launch times introduced by
alytics workloads: TeraSort benchmark (86.1), TPC-DS Benci’F—he analytics framework (i.e., Pywren).

mark (86.2) and BigData Benchmark (86.3). All of our experi-impact of estimation errors. Caerus's JCT and cost-
ments use Lambda instances W#8B memory and deploy ef ciency is gated on being able to estimate parameters like
Jiffy on 6 m4.16xlarge EC2 instances. produce rater() and consume rate) accurately. Since

Compared approachesWe compare Caerus with the eager C2€rus's estimation errors are quite small in practcd{o),

and lazy scheduling approaches, implemented as a part Y€ Study theirimpact by introducing errors arti cially.

Caerus scheduler. These scheduling approaches correspon&-0 Inject errors in produce rate estimation, Wv_a_randomly
to the two extremes typically used in server-centric analyticS€/€Ct map tasks in our TeraSort job with probabifigyand
frameworks for task level scheduling — lazy in Spark [30] for each of them, m_corr(_actly estimate the data output rate by
and MapReduce [48], and eager in Dryad [32] and MapReC_:aerus's of ine estimation ak the actual value. We de-

duce Online [29]). Note that since our main contribution is a"Ot€ Pe &s error probability ankl as the error ratio. Since the
produce rate, is the aggregated data output rate across alll

5We ensure function invocations are warm to avoid cold-start delays. map tasks, our stochastic approach effectively injects errors

(@) JCT (b) Cost
Figure 8:Impact of produce rate estimation errors (86.1).The re- (@) JCT (b) Cost
sults are normalized against the performance with no injected errorszigure 10:NIMBLE performance for TPC-DS queries (86.2)Its
JCT is comparable to eager ah®8-2:2 lower than lazy, while its
cost is comparable to lazy and3B-157 lower than eager.

6.2 TPC-DS Benchmark

The TPC-DS benchmark [51] has a set of standard decision
support queries based on those used by retail product suppli-
ers. The queries vary widely in terms of compute, storage and
(8 JCT (b) Cost network 1/0O load variations. We evaluate Caerus on TPC-DS
Figure 9:Impact of consume rate estimation errors (86.1)There- \yjth scale factor ofL00Q which results in a total input size of
sults are normalized against the performance with no injected oIS TR across various tables. Similar to Locus [14], we evaluate
to therp, estimate as well. Figure 8 shows the impact of thefour representative queries (in terms of performance character-
injected estimation errors ddIMBLE's performance, i.e., JCT istics) from the TPC-DS Benchmark, speci cally, quer@$
and execution cost, with the corresponding metrics normalized16 Q94andQ95 All selected queries have complex DAGs
against a run with no injected errors. We observe Miat- comprising six to eight stages, with each query operating over
BLE's performance is minimally affected — across variousa subset of th&TB input — varying from 33GB to 312GB.
combinations of error probability and error ratio, the JCT andNote that some late stages in the selected queries process
execution cost is always within 4% of the run with no in- much less data compare to early stages (after sejeémal and
jected errors. We attribute this to the runtime pro ler, which groupby operations) — we adjust the degree of parallelism
tracks the real-time progress of each map task and re nes thier these stages based on the amount of data they process.
produce rate estimation by continuously re-estimating the task Figure 10 compares the performance foMELE with the
output rates. As such, the runtime pro ler is able to correctlazy and eager approaches. The results indicate that Caerus
the of ine estimations in produce rate before launching thecan ef ciently navigate the JCT-cost trade-off for all evaluated
reducers, minimizing the impact of errors. queries. Speci callyNimMBLE achieves JCT comparable to
To study the impact of consume rate estimation errors, weager for all the queries, while outperforming lazyb§8-
employ a similar error rate and error ratio driven approach fo:2 . For cost,NIMBLE matches the lazy approach while
reduce tasks. Note that runtime pro ler is unable to correctoutperforming eager by.23-157 .
for estimation errors in this case, since it can re-estimate thg 5 ¢ Diving deeper into NMBLE bene ts
consume rate onlguring reduce task executions, which is
after the reduce tasks have already been launched. Figure
shows the impact of injected errors omMBLE performance.
For error ratic> 1 (i.e., estimated rate > actual ratB)MBLE

Ig order to better understand the gains enabledlbysLE

scheduling, we zoom in on the performance for Quetyf

the TPC-DS benchmark. Figure 11 shows the step-level de-

incorrectly estimates that the reduce task would nish fastelpende_nme_s foR1 while _F|gure 12 shows the breakdown of
execution time across different stages. Note that compute and

than it actually does, while for error ratio 1, it assumes the L S
. network 1/0 take up most of the execution time, highlighting
opposite. As expected, for the former case, Caerus launches

reduce tasks later than it should, resulting in a longer JC'IpOtentlalI gains from pipelining. Figure 14 shows the job exe-

while for the latter scenario, it launches them sooner thar‘1jutlon breakdowns with lazy, eager aneMdLE scheduling.

necessary, resulting in increased cost. Figure 9(a) shows th@ptimal pipelining across stagesWe now walk througlQ1s

the normalized JCT increases frdn®7 to1:12 as error execution with Caerus (Figure 14(c)). Caerus identifestep

ratio is increased fror to 4, while Figure 9(b) shows that the dependencies (i.e., parent-child step pairs) as pipelineable,
cost increases fror08 to 1:18 as error ratio increases shown as red arrows in Figure 11.

from 1=2to 1=4. Moreover, at higher error probability, the cost ~ While all map stages are launched at titwe O, (since they
increase is greater since more reducers are launched earlgw not have upstream dependencies), Caerus launches tasks
than necessary; while the JCT increase is largely unaffecteakross subsequent stages in a manner that ensures child steps in
since it only depends on ttgtowesttask. Note that even with the above parent-child step pairs are optimally pipelined with
extreme estimation error:%(and4), the increase in cost the parent step, which corresponds to a large portion of the
or JCT is only 12-18%. guery execution. This is highlighted in Figure 14(c): when con-

Figure 13:Ratio of estimated & measured pa-
rameters for TPC-DS queries Error bars de-
Figure 11:The step dependency model foQ1 Figure 12:Time breakdown for Q1 note standard deviation across all tasks.

(a) Lazy (b) Eager (c) NimBLE (d) NImMBLE Input Parameters
Figure 14:Diving deeper into NIMBLE bene ts for TPC-DS query Q1(86.2.1).(a, b, c) showQ1lexecution breakdown for lazy, eager, and
NIMBLE, respectively; the black dots inside a task denote pipeline-breakers between steps. The degree of parallelism for Stages 1-8 is: {1, 100,
50, 50, 20, 40, 1, 1}. Note that Stages 1 (red) and 7 (purple) contain only one very short task, making them hard tdlsesL édinput
parameters as measured by Caerus runtime pro ler (solid lines) and as estimated by input estimator (dashed lines) for part of Stage 3 (yellow).

trasted with the lazy approach in Figure 14(a), Caerus enablgsarameter estimations fog, r. anddy; is within 4% across
a JCT that i2:2 lower than the lazy approach. Meanwhile, all queries. As we already saw in 86N\MBLE scheduling is
Caerus also ensures that the tasks are not launched too sooraiso robust to higher estimation errors.

order to minimize time spent waiting for input from the parent

step to become available, and therefore, the end-to-end job Data skew.We note that Stage 3 (yellow) experiences data

ex- . ST
ecution cost. As a concrete example, since grgpipby1.s1 gkew across tasks (Figure 14(6}) 14(c)) — our pro ling indi
. - . cates that some tasks proces$:6 more data than others.
is much shorter than stgpinl.s2 and cannot nish before o

Caerus captures the effect of such data skew iNitsBLE

joinl.s2 |, tasks intheyroupby stage are started after tasks in : . . .
joinl stage are started, but before they nish execution. Com§chedullng algorithm, and launches tasks in Stage 3 at a time

pared with Figure 14(b), this allows name to Caerus achieve 5hat still ensures JCT and cost optimality for the job execution.
cost that is 1.56 lower than the lazy approach. Fast scheduling decisionsThe query Q1 has over 250 tasks
across 8 stages — Caerus schedules and launches each task in

gvigref?;qgfsuéiggEtﬁjcr:?szhifggﬁr?;tr';z:nstgezg?g taeﬁee-ra bout40Qus (on average). In contrast, when the task launch
y 9 9 request is issued to AWS Lambda, it typically takes an ad-

process smaller amounts (_)f_dat_a than upstream stages (Sm&%onal 25 320ms to start the task's execution [52]. As
operators such as Iter and join signi cantly reduce the data to . . : .
such, despite making much more ne-grained (i.e., task-level)

downstream stages), and consequently have shorter durationys. . . L) i
: : X ecisions than traditional job schedulers, Caerus is fast enough

As noted in §4.2NIMBLE scheduling enables both optimal to not be the bottleneck in the analytics execution pipeline

cost and JCT simultaneously for such DAGs, which is re ected Y PP '

in Figure 14. Moreover, this observation holds across all of oug.3 BigData Benchmark

evaluated TPC-DS queries, ensuring cost and JCT optimali

with Caerus for all of them. %he Big Data Benchmark [53] is a query suite derived from

production databases. We consider Quer®3,(which is a
Accurate pro ling & estimation for N IMBLE inputs. Fig- join query with four stages, with a step dependency model
ure 14(d) shows the normalized produce rate and consunsmilar to the rst four stages of TPC-DS benchmarkd
rate of of stegoinl.s2 in Stage 3, as pro led by Caerus (Figure 11). Our implementation uses shuf e hash join (SHJ),
runtime pro ler and as estimated by Caerus input estimatoand ef ciently pipelines the join stage with the map stages.
We make two observations: (1) the consume rate is stable sigads in123GB of input, and can perform joins with three dif-
a function of time, as modeled in §3, and (2) the estimatederent sizes485 312rows inQ3A53;332 015rows forQ3B
values are a close approximation of the actual produce anand533 287, 121 rows forQ3CThis allows us to understand
consume rates. We nd these observations extend to all stagdbe effect of join size on MBLE scheduling.

across quer@l as well as to all other queries we evaluate Figure 15 compareNiIMBLE approach with both the lazy
in this section — Figure 13 shows that the average error imnd eager approaches with different join data sSigZEsAQ3G.

	Introduction
	Motivation
	Background
	Serverless Scheduling: A New Problem
	Opportunities & Challenges

	Step Dependency Model
	Nimble Scheduling
	Nimble for Two-stage Map-Reduce
	Nimble for General Analytics
	Optimal launch time for individual tasks
	Optimal schedule for the entire job

	Design Details
	Caerus System
	Caerus Implementation

	Evaluation
	TeraSort
	TPC-DS Benchmark
	Diving deeper into Nimble benefits

	BigData Benchmark

	Related Work
	Conclusion
	Theoretical Proofs

