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Abstract

We consider the problem of fair resource allocation in a
system where user demands are dynamic, that is, where user
demands vary over time. Our key observation is that the
classical max-min fairness algorithm for resource allocation
provides many desirable properties (e.g., Pareto efficiency,
strategy-proofness, and fairness), but only under the strong
assumption of user demands being static over time. For the
realistic case of dynamic user demands, the max-min fairness
algorithm loses one or more of these properties.

We present Karma, a new resource allocation mechanism
for dynamic user demands. The key technical contribution in
Karma is a credit-based resource allocation algorithm: in each
quantum, users donate their unused resources and are assigned
credits when other users borrow these resources; Karma
carefully orchestrates the exchange of credits across users
(based on their instantaneous demands, donated resources
and borrowed resources), and performs prioritized resource
allocation based on users’ credits. We theoretically establish
Karma guarantees related to Pareto efficiency, strategy-
proofness, and fairness for dynamic user demands. Empirical
evaluations over production workloads show that these
properties translate well into practice: Karma is able to reduce
disparity in performance across users to a bare minimum
while maintaining Pareto-optimal system-wide performance.

1 Introduction
Resource allocation is a fundamental problem in computer
systems, spanning private and public clouds, computer
networks, hypervisors, etc. There is a large and active body
of research on designing resource allocation mechanisms
that achieve Pareto efficiency (high resource utilization) and
strategy-proofness (selfish users should not be able to benefit
by lying about their demands) while ensuring that resources
are allocated fairly among users, e.g., [30,32,39,57,59,66,67].

For a system containing a single resource, the two most
popular allocation mechanisms are strict partitioning [9, 72]
and max-min fairness [30, 32, 36, 40, 49, 50, 57, 59, 66].

The former allocates the resource equally across all users
(“fair share”), independent of their demands; this guarantees
strategy-proofness and fairness, but not Pareto efficiency since
resources can be underutilized when one or more users have
demands lower than the fair share. Max-min fairness allevi-
ates limitations of strict partitioning by taking user demands
into account: it maximizes the minimum allocation across
users while ensuring that each user’s allocation is no more
than their demand. A classical result shows that resource allo-
cation based on max-min fairness guarantees each of the three
desirable properties—Pareto efficiency, strategy-proofness,
and fairness. These powerful properties have, over decades,
motivated efforts in both systems and theory communities on
generalizations of max-min fairness for allocating multiple
resources [30–32], for incorporating application performance
goals and deadlines [31, 39, 46, 47], and for new models of
resource allocation [17, 22, 25, 33, 59, 66], to name a few.

This paper explores a complementary problem—resource
allocation of a single elastic resource in a system where user
demands are dynamic, that is, vary over time. Dynamic user
demands are the norm in most real-world deployments [12,16,
41, 45, 60, 63, 70, 72, 79]; for instance, analysis of production
workloads in §2 reveals that user demands vary by as much as
17× within minutes, with majority of users having demands
with standard deviation 0.5−43× of the average over time.
We show in §2 that, for systems with such dynamic user de-
mands, resource allocation based on the max-min fairness
algorithm fails to guarantee one or more of its properties: (1)
if the allocation is done based on demands at t=0, Pareto ef-
ficiency and strategy-proofness are no longer guaranteed; and,
(2) if the allocation is done periodically, long-term fairness is
no longer guaranteed—for n users with the same average de-
mand, the max-min fairness algorithm may allocate some user
as much as Ω(n) more resources than other users over time.

We present Karma, a new resource allocation mechanism
for dynamic user demands. The key technical contribution
of Karma is a credit-based resource allocation algorithm:
in each quantum, users receive credits when they donate
a part of their fair share of resources (e.g., if their demand



is less than their fair share); users can use these credits to
borrow resources in any future quantum when their demand
is higher than their fair share. When the supply of resources
from donors is equal to the demand from borrowers, it is
easy to exchange resources and credits among users. The key
algorithmic challenge that Karma resolves is when supply
is not equal to demand—in such scenarios, Karma carefully
orchestrates resources and credits between donors and
borrowers: donors are prioritized so as to keep credits across
users as balanced as possible, and borrowers are prioritized
so as to keep the resource allocation as fair as possible.

We theoretically establish Karma guarantees for dynamic
user demands. Karma guarantees Pareto efficiency at all times:
in each quantum, it allocates resources such that it is not pos-
sible to increase the allocation of a user without decreasing
the allocation of at least another user. For strategy-proofness,
Karma guarantees that a selfish user cannot increase their ag-
gregate resource allocation by over-reporting their demands
in any quantum. In addition, we show a new surprising
phenomenon (that may primarily be of theoretical interest): if
a user had perfect knowledge about the future demands of all
other users, the user can increase its own aggregate allocation
by a small constant factor by under-reporting its demand
in some quanta; however, for n users, imprecision in this
future knowledge could lead to the user losing Ω(n) factor
of their aggregate resource allocation by under-reporting
their demand in any quantum. Put together, these results
enable Karma to provide powerful guarantees related to
strategy-proofness. Finally, for fairness, we prove that given a
set of (past) allocations, Karma guarantees an optimally-fair
resource allocation. We also establish that Karma guarantees
similar properties even when multiple selfish users can col-
lude, and even when different users have different fair shares.

We have realized Karma on top of Jiffy [41], an
open-sourced multi-tenant elastic memory system; an
end-to-end implementation of Karma is available at
https://github.com/resource-disaggregation/karma.
Evaluation of Karma over production workloads demonstrates
that Karma’s theoretical guarantees translate well into prac-
tice: it matches the max-min fairness algorithm in terms of re-
source utilization, while significantly improving the long-term
fairness of resources allocated across users. Karma’s fairer
resource allocation directly translates to application-level
performance; for instance, over evaluated workloads, Karma
keeps the average performance (across users) the same as
the max-min fairness algorithm, while reducing performance
disparity across users by as much as ∼2.4×. Karma also in-
centivizes users to share resources: our evaluation shows that
(1) Karma-conformant users achieve much more desirable
allocation and performance compared to users who prefer a
dedicated fair share of resources; and, (2) if users were to turn
Karma-conformant, they can improve their performance by
better matching their allocations with their demands over time.

2 Motivation

We begin by outlining our motivating use cases, followed
by an in-depth discussion on the limitations of the classic
max-min fairness algorithm for dynamic user demands.

Motivating use cases. Fair resource allocation is an important
problem in private clouds where resources are shared by mul-
tiple users or teams within the same organization [12, 16, 17,
30–33, 36,39, 40, 45,46, 59, 60,66, 70, 72,79, 80]; our primary
use cases are from such private clouds. Karma may also be
useful for emerging use cases from multi-tenant public clouds
where spare resources may be allocated to tenants while
providing performance isolation [8, 14, 38, 41, 57, 63, 64, 66].
We discuss motivating scenarios in both contexts below.

One scenario is shared analytics clusters. For instance,
companies like Microsoft, Google, and Alibaba employ
schedulers [32,35,39,69,70,80] that allocate resources across
multiple internal teams that run long-running jobs (e.g., for
data analytics [23, 81]) on a shared set of resources. Consider
memory as a shared resource; in many of these frameworks,
main memory is used to cache frequently accessed data
from slower persistent storage and to store intermediate
data generated during job execution. Indeed, increasing the
allocated memory improves job performance; however, since
memory is limited and is shared across multiple teams, en-
suring resource allocation fairness is also a key requirement.
Moreover, since these jobs are usually long-running, their
performance depends on long-term memory allocations,
rather than instantaneous allocations [16, 32, 45].

Another use case is shared caches: many companies (e.g.
Facebook [9, 12, 52] and Twitter [79]) operate clusters of
in-memory key-value caches, such as memcached or Redis,
serving a wide array of internal applications. In this use case,
the memory demand of each application may be computed as
the amount of memory that would be required to fit hot objects
within the cache [18,19,52,79]. In such settings, efficient and
fair sharing of caches is of utmost importance [9, 19, 52, 72]:
to maintain service level agreements, it is important to have
consistently good performance over long periods of time,
rather than excellent performance at some times and very
poor performance at other times (see [9, 19, 52, 72] for more
discussion on the importance of long-term performance).

Third, fair resource allocation while ensuring high utiliza-
tion is also a goal in inter-datacenter bandwidth allocation [36,
40, 49]. Existing traffic engineering solutions used in produc-
tion environments perform periodic max-min fair resource
allocation to account for dynamic user demands [36, 40, 49].
Our work demonstrates that periodically performing max-min
fair resource allocation over such dynamic demands leads to
unfair resource allocation across users.

Finally, an interesting use case in the public cloud context is
that of burstable VMs [2,4] that use virtual currency to enable
resource allocation over dynamic user demands. These VMs
share resources with VMs from other users and are charged

https://github.com/resource-disaggregation/karma
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Figure 1: Analysis of Google and Snowflake workloads suggests that a large fraction of users have dynamic demands (left)
that can change dramatically over short timescales (center, right) (Left) CDFs, across users, of the ratio of standard deviation
and mean of each user’s demand. (Center) For a randomly sampled user in the Snowflake trace, the variation in the user’s CPU
and memory demands (normalized by minimum demand) over a 15 minute period. (Right) For a randomly sampled user in the
Google trace, the variation in the user’s CPU and memory demands (normalized by minimum demand) over a 2 hour period.

on an instance-specific baseline. When resource utilization
is below the baseline, users accumulate virtual currency
that they can later use to gain resources beyond the baseline
during periods of high demand. Given that Burstable VMs are
primarily useful for dynamic user demands, they will likely
need resource allocation mechanisms that guarantee high
utilization, strategy-proofness, and fair resource allocation.

Dynamic user demands. Increasingly many applications
running data analytics or key-value caches operate on data
collected from social media, application and network logs,
mobile systems, etc. A unique characteristic of these data is
that they are less controllable by the organization because
they are generated by entities outside of the organization.
As a result, applications can observe highly time-varying
dynamic resource demands [12, 16, 41, 45, 60, 63, 70, 72, 79].

To build a deeper understanding of variation in user
demands over time, we analyze two publicly-available
production workloads: (1) Google [60] resource usage
information across 8 clusters (1000−2000 users per cluster)
over a 30 day period; and, (2) Snowflake [72], a cloud-based
database query engine that provides resource usage statistics
for over 2000 users over a 14 day period. To characterize user
demand variability over time, we compute—for each user—
the ratio of the standard deviation and mean of their demands
over the entire period. Figure 1 (left) shows that 40−70%
of all users in both Google and Snowflake workloads have
a standard deviation in CPU and memory demands at least
0.5× their mean, indicating high variability in demands for
most users. Furthermore, the standard deviation in demands
of as many as 20% of the users can be as high as their mean
demand, with some users having extremely high variance
in demands (standard deviations up to 12−43× the mean).
Similar observations have been made for time-varying
user demands in inter-datacenter networks; for instance,

production studies [5] show that, on average, user demands
vary by 35% within 5-minute intervals, with some demands
varying by as much as 45% within a short period of time.

Figure 1 (center) shows the CPU and memory demands for
a randomly-sampled user from the Snowflake trace over a 15
minute window (we show only one user and only 15 minute
window for clarity; analyzing a sample of 100 users, we
find 87% of the users to have similar demand patterns). The
figure shows that user demands can change dramatically over
tens of seconds, by as much as 6× and 2× for compute and
memory, respectively. Similarly, we see significant variation
in demands even for a random user from the Google trace
(shown in Figure 1 (right)).

Max-min fairness guarantees fail for dynamic user
demands. The classical max-min fairness algorithm for
resource allocation provides many desirable properties, e.g.,
Pareto efficiency, strategy-proofness, and fairness. However,
buried under the proofs is the assumption that user demands
are static over time, an assumption that does not hold in
practice (as demonstrated in Figure 1). For the realistic case
of dynamic user demands, max-min fairness can be applied
in two ways, each of which leads to violating one or more
of its properties. We will demonstrate this using the example
in Figure 2; here, time is divided into five quanta and three
users have demands varying across quanta.

First, one can naïvely perform max-min fair allocation
just once based on user demands at quantum t = 0. This
results in max-min fairness losing both Pareto efficiency
and strategy-proofness. In the example of Figure 2, since
allocations will only be done based on the demands specified
by the users at t = 0, if users were to specify their true
demands, user C will obtain an allocation of 1 unit leading
to a total useful allocation of 3 units over the entire duration
(as shown in Figure 2 (middle, top)); if user C were to lie
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Figure 2: Classical max-min fairness guarantees break for
dynamic user demands. Here, 6 units of a resource are shared
by 3 users (fair share of 2). Discussion in §2.

and over-report their demand at t = 0 as 2 units, then they
can achieve a more desirable total useful allocation of 5 units
(Figure 2 (middle, bottom)). This breaks strategy-proofness.
In addition, max-min fairness is also not Pareto efficient:
for many quanta, resources allocated to users will be
underutilized as is evident in Figure 2 (middle).

A better way to apply max-min fairness for dynamic user
demands is to periodically reallocate resources based on users’
instantaneous demands (e.g., every quantum of time periods,
as in several operating systems and hypervisors [3, 73]). This
trivially guarantees Pareto efficiency and strategy-proofness
but results in extremely unfair allocation across users. Fig-
ure 2 (right, top) shows an example where max-min fairness
can result in 2× disparity between resources allocated to users
over the 5 quanta—user A receives a total allocation of 10
slices, while user C receives a total allocation of only 5 slices,
despite them having the same average demand; this example
can be easily extended to demonstrate that max-min fairness
can, for n users, result in resource allocations where some user
gets a factor of Ω(n) larger amount of resources than other
users (proof in [71]). Such disparity in resource allocations
also leads to disparity in application-level performance across
users since, as discussed above in use cases, many applica-
tions require consistently good performance over long periods
of time, rather than excellent performance at some times and
very poor performance at other times [22, 28, 32, 68]. We will
demonstrate, in the evaluation section, that users experience
significant disparity in application-level performance due to
such disparate resource allocations.

For the rest of the paper, we focus on long-term fairness;
informally, an allocation is considered fair if all users have
the same aggregate resource allocation over time. Our
goal is to design a resource allocation mechanism that,
for dynamic user demands, guarantees Pareto efficiency,
strategy-proofness, and fairness.

3 Karma

Karma is a resource allocation mechanism for dynamic user
demands. Karma uses credits (§3.1, §3.2)—users receive
credits when they donate a part of their fair share of resources
(e.g., when their demand is less than their fair share), and can
use these credits to borrow resources beyond their fair share
during periods of high demand. Karma carefully orchestrates
the exchange of resources and credits between donors and
borrowers: donors are prioritized in a manner that ensures
credit distribution across users remains as balanced as
possible, and borrowers are prioritized in a manner that keeps
the resource allocation as fair as possible. We will prove
theoretically in §3.3 that, while simple in hindsight, this allo-
cation mechanism simultaneously achieves Pareto efficiency,
strategy-proofness, and fairness for dynamic user demands.

3.1 Preliminaries
We consider the following setup for the problem: we have
n users sharing a single resource (CPU, memory, GPUs,
etc.); each user has a fair share of f resource units (each unit
is referred to as a slice), and thus the pool has n× f slices
of the resource (as we discuss in §3.4, all our results hold
for users having different fair shares). Time is divided into
quanta, users demand a certain number of resource slices
every quantum, and Karma performs resource (re)allocation
at the beginning of each quantum. While user demands
during each quantum can be arbitrary, unsatisfied demands
in one quantum do not carry over to the next. Similar to prior
work [30, 57, 59, 66], we assume that users are not adversarial
(that is, do not lie about their demands simply to hurt others’
allocations), but are otherwise selfish and strategic (willing
to misreport their demands to maximize their allocations).

3.2 Karma design
Let 0≤ α≤ 1 be a parameter. Karma guarantees that each
user is allocated an α fraction of its fair share (=α· f ) in each
quantum; we refer to this as the guaranteed share. Karma
maintains a pool of resource slices—karmaPool—that, at any
point in time, contains two types of slices:
• Shared slices are the slices in the resource pool that are not

guaranteed to any user. It is easy to see that the number of
shared slices in the system is n· f−n·α· f =n·(1−α)· f .

• Donated slices, that are donated by users whose demands
are smaller than their guaranteed share.

We use these two sets of slices in the following manner.
In any given quantum, if a user has demand less than its
guaranteed share, then the user is said to be “donating” as
many slices as the difference between the user’s guaranteed
share and demand in that quantum. A user that has demand
larger than its guaranteed share is said to be “borrowing”
slices beyond its guaranteed share, which the system can
potentially supply using either shared slices or donated slices.



3.2.1 Karma credits

Karma allocates resources not just based on users’ instanta-
neous demands, but also based on their past allocations. To
maintain past user allocation information, Karma uses credits.

Users earn credits in three ways. First, each user is
bootstrapped with a fixed number of initial credits upon
joining the system (we discuss the precise number once we
have enough context, in §3.4); second, each user is allocated
(1−α) · f free credits every quantum as compensation for
contributing (1−α) fraction of its fair share to shared slices.
Finally, users earn one credit when some other user borrows
one of their donated slices (one credit per quantum per slice).

Unlike earning credits, there is only one way for any user
to lose credits: for every slice borrowed from the karmaPool
(donated or shared), the user loses one credit.

3.2.2 Prioritized resource allocation

We now describe Karma’s resource allocation algorithm, that
orchestrates resources and credits across users (Algorithm 1).
To make the discussion succinct, we refer to the sum of
user demands beyond their guaranteed share as “borrower
demand”; that is, to compute borrower demand for any
given quantum, we take all users with demand greater than
their guaranteed share and sum up the difference between
their demand (in that quantum) and α · f . In quanta when
borrower demand is equal to the supply (number of slices
in karmaPool), Karma’s decision-making is trivial: simply
allocate all slices in karmaPool to the borrowers, and update
credits for all users as described in the previous subsection.
The key algorithmic challenge that Karma resolves is when
the supply is either more or less than the borrower demand.
We describe Karma allocation mechanism for such scenarios
next and then provide an illustrative example.

Orchestrating resources and credits when supply >
borrower demand. When supply is greater than borrower
demand, there are enough slices in karmaPool to satisfy the
demands of all borrowers. In such a case, Karma prioritizes
the allocation of donated slices over shared slices (so that
donors get credits), and across multiple donated slices,
prioritizes the allocation of a slice from the donor that has
the smallest number of credits—this allows “poorer” donors
to earn more credits, and moves the system towards a more
balanced distribution of credits across users. Intuitively,
credits capture the allocation obtained by a user until the
last quantum—users who obtained lower allocations in the
past will have a higher than average (across users) number of
credits, while those who received a surplus of allocations will
have a below-average number of credits. Hence, balancing
the number of credits across users over time allows Karma to
move towards a more equitable set of total allocations across
users. Once all donated slices are allocated, Karma allocates
shared slices to satisfy the remaining borrower demands.

Algorithm 1 : Karma resource allocation algorithm.
demand[u]: demand of user u in the current quantum
credits[u]: credits of user u in the current quantum
alloc[u]: allocation of user u in the current quantum
f : fair share
α: guaranteed fraction of fair share

Every quantum do:
1: shared_slices← n·(1−α)· f
2: For each user u,
3: increment credits[u] by (1−α)· f
4: donated_slices[u]= max (0, α· f− demand[u])
5: alloc[u]= min (demand[u], α· f )
6: donors← all users uwith donated_slices[u]>0
7: borrowers← all users uwith
8: alloc[u]<demand[u]& credits[u]>0

9: while borrowers ̸=φ and
10: (∑u donated_slices[u] > 0 or shared_slices > 0)

do
11: b⋆← borrower with maximum credits
12: if donors ̸=φ then
13: d⋆← donor with minimum credits
14: Increment credits[d⋆] by 1
15: Decrement donated_slices[u] by 1
16: Update the set of donors (line 6)
17: else
18: Decrement shared_slices by 1
19: Increment alloc[b⋆] by 1
20: Decrement credits[b⋆] by 1
21: Update the set of borrowers (line 7)

Orchestrating resources and credits when supply <
borrower demand. When supply is less than demand,
karmaPool does not have enough slices to satisfy all borrower
demands. In such a scenario, Karma prioritizes allocating
slices to users with the maximum number of credits. This
strategy essentially favors users that had fewer allocations in
the past (and thus, a larger number of credits), hence moving
the system towards a more balanced allocation of resources
across users, promoting fairness. At the same time, reducing
the credits for the users with the most credits also moves the
system to a more balanced distribution of credits across users.

Illustrative example. We now illustrate through a concrete
example. The running example in Figure 3 shows the execu-
tion of Karma’s algorithm for the example from Figure 2 for
α=0.5: that is three users A, B, and C, each with a fair share
2 slices ( f =2), and a guaranteed share of 1 slice. Recall that,
since (1−α)· f =1, each user receives 1 credit every quantum,
and suppose all users are bootstrapped with 6 initial credits.

In the first quantum, C’s demand is equal to the guaranteed
share, while A and B request 2 and 1 slices beyond the guar-
anteed share, respectively. Since supply (= 3 shared slices
in karmaPool) is equal to borrower demand, Karma uses the
shared slices to allocate slices beyond the guaranteed share for
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Figure 3: Karma resource allocation for the running example of Figure 2: Recall that there are 6 resource slices, 3 users each
with average demand and fair share equal to 2. We show the case of the guaranteed share being 1 (α=0.5), with 6 bootstrapping
(initial) credits for each user. Note that each user receives 1 free credit every quantum. Karma achieves significantly improved
fair allocation than max-min fairness—it allocates each user an equal allocation of 8 resource slices over time.

A and B and satisfies their demands. This results in a final allo-
cation of 3 slices for A, 2 slices for B, and 1 slice for C. A loses
2 credits, and B loses 1 credits, and no one gains any credits.

In the second quantum, A demands 3 slices, while B and
C donate 1 slice each. The total supply (=5, with 2 donated
slices and 3 shared slices) exceeds the borrower demand. A
is allocated 3 slices and it loses 3 credits (since its allocation
is 2 slices above its guaranteed share). B and C receive 1
credit each since their donated slices are used. Similarly, in
the third quantum, B demands 3 slices, while A and C donate
1 slice each. Since total supply exceeds borrower demand,
B receives the 3 slices it asked for, and loses 2 credits; A and
C gain 1 credit each.

The fourth quantum is important: here, demand exceeds
supply, and there are no donated slices. Now, unlike classic
max-min fairness, Karma will prioritize the allocation of
resources based on the credits of each tenant. Since at the
start of this quantum, C has 11 credits, while A and B have
only 6 and 7 credits respectively, C will be able to get 3 extra
slices from the pool of shared slices by using 3 credits and
achieve an allocation of 4. A and B will get their guaranteed
allocation of 1 and do not gain or lose any credits.

In the fifth quantum, once again, demand exceeds supply.
C has 9 credits, B has 8 credits, and A has 7 credits. Karma
first prioritizes allocating to C giving it 1 extra slice, at which
point both C and B have equal credits (8). Next, they both
get 1 extra slice each, at which point the supply is exhausted.
The final resulting allocation is 1 slice for A, 2 slices for B,
and 3 slices for C.

In the end, A, B, and C end up with the exact same total
allocation (8 slices) and number of credits (unlike max-min
fairness where user allocations had a disparity of 2×).

3.3 Karma Properties & Guarantees
In this section, we present a theoretical analysis of Karma.
Recall from §3.1 that, similar to all prior works, users
are considered selfish and strategic (that is, are willing to
misreport their demands to maximize their allocations), but
not adversarial (that is, do not lie about their demands simply

to hurt others’ allocations). For the purpose of our theoretical
analysis, we assume that Karma is initialized with a large
enough number of initial credits so that users do not run out
of credits during the execution of the algorithm (we discuss
how to achieve this in practice in § 3.4). All our results hold
for α = 0; extending our results to α > 0 is an interesting
open question. Finally, while we provide inline intuition for
each of our results, full proofs are presented in [71].

We define Pareto efficiency on a per-quantum basis. An
allocation is said to be Pareto efficient if it is not possible
to increase the allocation of a user without decreasing
the allocation of at least one other user by a similar total
amount during that quantum. Note that, Pareto efficiency on
a per-quantum basis implies Pareto efficiency over time.

Theorem 1. Karma is Pareto efficient.

Karma’s Pareto efficiency follows trivially from the obser-
vation that similar to max-min fairness, Karma allocation
satisfies the two properties: (1) no user is allocated more
resources than its demand, and (2) either all resources are
allocated or all demands are satisfied.

For strategy-proofness, we make two important notes.
First, if one assumes that the system has a priori knowledge
of all future user demands, the resource allocation problem
can be solved trivially using dynamic programming; however,
for many use cases, it is hard to have a priori knowledge
of all future user demands. This leads to our second note:
Karma is solving an “online” problem (that is, it does not
assume a priori knowledge of future user demands), and thus,
we prove online strategy-proofness [7] defined as follows:
assume that all users are honest during quanta 0 to q− 1;
then, a mechanism is said to be online strategy-proof if, for
any quantum q, a user cannot increase its allocation during
quantum q by lying about its demand during quantum q.

Theorem 2. Karma is online strategy-proof.

To prove Theorem 2, we actually prove a stronger result
stated below. Karma’s online strategy-proofness trivially
follows from this.
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Lemma 1. A user cannot increase its useful resource
allocation by specifying a demand higher than its real demand
in any quantum.

The proof for the lemma is a bit involved, but intuitively, it
shows the following. The immediate effect of a user speci-
fying a demand higher than its actual demand is that if the
user is allocated more resources than its actual demand, these
extra resources do not contribute to its utility, but do put the
user into a disadvantageous position: not only can this user
lose credits (either because it’s asking for resources beyond its
guaranteed share, or because it could have gained credits if this
extra resource could have been allocated to some borrower),
but also because other users get fewer resources; this makes
other users be favored by the allocation algorithm in the future
while making the lying user less favored. Thus, the user can-
not increase its long-term “useful” allocation by specifying a
demand higher than the real demand in any quantum. Specif-
ically, it is possible that when a user over-reports its demand
during quantum q′, the user receives an increased instanta-
neous allocation during some future quantum q>q′; however,
we are able to show that, in this case, the user will also receive
reduced instantaneous allocation(s) during other quantum(s)
in between q′ and q, leading to either a lower or equal total
allocation over the period between q′ and q. The hardness in
the proof stems from carefully analyzing such cascade effects:
a small change in users’ resource allocation in any quantum
can result in complex changes in future allocations that may
lead to higher instantaneous but equal or lower total alloca-
tions in future quanta. Once we prove this lemma, the proof
for Karma’s online strategy-proofness follows immediately.

While analyzing Karma properties, we encountered a new,
surprising, phenomenon that may be of further theoretical in-
terest: we show that a user that knows all future demands of all
other users can report a demand that is lower than its actual de-
mand in the current quantum to increase its allocation in future
quanta by a small constant factor. However, any imprecision
in the knowledge of all future demands of all other users could
result in the user losing a factor of Ω(n) of its total allocation.

Lemma 2. A user cannot increase its total useful allocation
by a factor more than 1.5× by specifying a demand less than
its real demand in any quantum. Gaining this useful allocation
requires the user to know the future demands of all users. If the
user does not have a precise knowledge of all future demands
of all users, it can lose its useful allocation by a factor of n+2

2
(for n≥3) by specifying a demand less than its real demand.

We provide intuition for this phenomenon using an example
(Figure 4). In the left figure, user A is able to gain 1
extra slice in its overall allocation by under-reporting its
demand (reporting 0 instead of 8) in the first quantum. By
under-reporting, its allocation in the first quantum reduces,
enabling it to get more resources during the second quantum
when it competes with user C. In the third quantum, it is
able to recover the resources it lost in the first quantum from
user B, resulting in an overall gain. To see the flip-side, if the
demands of other users had been as shown in Figure 4 (right),
then user A sees a 3× degradation in overall allocation.

To prove the first part of the Lemma 2, we consider an
arbitrary user Alice and an arbitrary time period, and compare
two scenarios—one where Alice is truthful (hereby called
the truthful scenario) and one where Alice is deviating by
under-reporting her demand during some quantum (hereby
called the deviating scenario).

Our key insight for the proof is that bounding the increase in
total allocation of all users is easier than reasoning about the
increase in total allocation of an individual user (Alice) since
even a small change in Alice’s demand during one quantum
can result in cascading effects on the total allocation of other
users as well. To that end, we prove the following claim: the
total amount of resources all the users have earned in excess
in the deviating scenario compared to the truthful one can be
at most as large as Alice’s total allocation in the truthful sce-
nario. We prove this claim based on the following observation:
whenever Alice under-reports her demand she is effectively
"donating" the allocation she would have gotten in the truthful
scenario to the other users whose allocations in the deviating
scenario increase. Since Karma is Pareto efficient, the total



gain in allocation across users during this quantum is limited
by the amount donated by Alice which is in turn bound by
Alice’s own allocation during this quantum in the truthful sce-
nario. By applying this reasoning iteratively across all quanta1,
we can show that the total increase in allocation across all
users cannot exceed the total allocation of Alice in the truth-
ful scenario. This already implies a 2× upper bound on the
maximum increase in total allocation that Alice can achieve.

To tighten the upper bound, we prove a second claim: if
Alice receives higher total allocation in the deviating scenario
compared to the truthful scenario, then there must exist some
other user Bob who gained an even larger increase in total
allocation than Alice. Putting together the above two claims
allows us to establish the desired upper bound. Based on
the first claim, the total gain in allocation across all users
cannot exceed Alice’s total allocation in the truthful scenario.
This implies that the sum of total gains across Alice and Bob
cannot exceed Alice’s total allocation in the truthful scenario.
Since Bob’s gain is at least as large as Alice’s gain (based
on the second claim), this implies that Alice’s gain is at most
half the total allocation of Alice in the truthful scenario—a
gain of at most 1.5×, thus proving the first part of Lemma 2.

The second part of the lemma is proven by first creating
a set of demands where a user can under-report its demand
during quantum q to earn increased total allocation by some
quantum q′ > q. Then we create a set of demands that are
identical up to quantum q but vastly different from quanta
q+1 to q′. If the user (in the hope of facing the first set of
demands) under-reports its demand on quantum q but ends
up facing the second set of demands then this results in vastly
different allocations by quantum q′. By correctly picking the
two sets of demands we get the desired bounds.

In [71], we prove an even stronger result that extends
Karma properties from Theorem 1, Theorem 2, Lemma 1 and
Lemma 2 to the case of multiple colluding users:

Theorem 3. No group of colluding users can increase their al-
location by specifying a demand higher than their real demand.
Additionally, for any group of colluding users, under-reporting
demands cannot lead to more than a 2× improvement in
their useful resource allocation. Finally, even if users form
coalitions, Karma is Pareto efficient and online strategy-proof.

Recall that Karma focuses on long-term fairness without a
priori knowledge of future user demands. To that end, the
following theorem summarizes Karma’s fairness guarantees:

Theorem 4. For any quantum q, given fixed user allocations
from quantum 0 to quantum q − 1, and user demands at
quantum q, Karma maximizes the minimum total allocation
from quantum 0 to quantum q across users.

1It turns out that Alice under-reporting in a given quantum cannot cause
cascading increases in total allocation across users in future quanta if Alice
does not under-report in future quanta. This is because Karma prioritizes
allocation to users with high credits (or equivalently low total allocations).

The proof for the above theorem follows from the prior-
itized resource allocation mechanism of Karma. Intuitively,
given allocations from quantum 0 to q−1, the user with the
least total allocation up to quantum q−1 will have the largest
number of credits. In quantum q, Karma will prioritize the
allocation of resources to this user (until it is no longer the
one with the minimum total allocation, after which it will
prioritize the next user with the minimum total allocation,
and so on), thus maximizing the minimum total allocation
from quantum 0 to q across users—this is the best one can
do in quantum q given past allocations.

3.4 Discussion

Finally, we briefly discuss some additional aspects of Karma
design not included in the previous subsections.

Bootstrapping Karma with initial credits. Recall that, to
bootstrap users, Karma allocates each user an initial number
of credits. The precise number of initial credits has little
impact on Karma’s behavior; after all, credits in Karma
essentially capture a relative ordering between users, rather
than having any absolute meaning. The only importance
of the number of credits is to ensure that no user runs out
of credits at any quantum (which, in turn, could lead to
violation of Karma’s Pareto efficiency guarantees): even if
spare resources are available, a user with high demand may
not be able to borrow resources beyond the guaranteed share
(line 7 of Algorithm 1) due to running out of credits. Thus,
Karma sets the number of initial credits to a large numerical
value to ensure that no user ever runs out of credits2,

User churn. Fairness is relatively ill-defined when users can
join and leave the system on a short-term basis (e.g., when a
user runs a short query with large parallelism, and then leaves
the cluster). Also, recall from our motivating scenarios, fair
resource allocation in private clouds is usually performed
for long-running services. However, Karma still handles user
churn since, in many realistic scenarios, the set of all users of
the system may not be known upfront during system initial-
ization. For users that join and leave over longer timescales,
Karma handles user churn with a simple mechanism: its
credits. When a new user joins, either the resource pool
size remains fixed and the fair share of all users is reduced
proportionally or the resource pool size increases and the fair
share of users remains the same. The credits of the existing
n−1 users do not change, and the new user is bootstrapped
with initial credits equal to the current average number of
credits across the existing n−1 users. Intuitively, users who
have donated more resources than they have borrowed will
have above-average credits, and those who have borrowed

2For example, in a system with 100 users with fair share of 100 slices,
setting initial credits to say 1013 will ensure that even a worst-case user with
highest possible demand (10000 slices) during all quanta cannot run out of
credits for∼31 years, which is good enough for all practical purposes.



more than they have donated will have below-average credits.
As such, initializing the new user with the average number of
credits (heuristically) puts the new user on equal footing with
an existing user that has borrowed and donated equal amounts
of resources over time. When a user leaves the system, the
fair share of the remaining users is increased proportionally
(or resource pool size reduces while maintaining the same
fair share), and there is no change in their credits.

Users with different fair shares. We have presented Karma’s
algorithm for the case of users having the same fair share
merely for simplicity: all our results extend to the case of
users having different fair shares. To generalize the algorithm
to users with different fair shares, users with larger weights
are charged fewer credits to borrow resources beyond their
guaranteed share when compared to users with smaller
weights. Intuitively, this enables users with larger weights to
obtain more resources than users with smaller weights for the
same number of credits. We achieve this by updating Line 20
of Algorithm 1 to decrement credits by 1

n·wi
instead of 1,

where wi is the normalized weight of the corresponding user,
and n is the number of users. For users with different fair
shares, this generalization leads to the same properties and
guarantees as discussed in §3.3 (the only difference, is that the
upper bound factor in Lemma 2 changes from 1.5× to 2×).
A full description of the weighted version of the algorithm
along with proofs of guarantees can be found in [71].

System parameters, and interpretation for α. Karma has
only one parameter: α; one can think of resource slice size and
quantum duration as parameters, but these are irrelevant to
Karma’s guarantees: they hold for any slice size and quantum
duration, as long as demands change at coarse timescales than
the quantum duration. The α parameter in Karma provides
a tradeoff between instantaneous and long-term fairness.
Providers can choose any α depending on the desired proper-
ties. Intuitively, an α smaller than 1 leads to a larger portion
of shared slices, giving Karma’s algorithm more flexibility
in adjusting allocations to achieve better long-term fairness.

4 Karma Implementation Details

We have implemented Karma on top of Jiffy [41], an
open-sourced elastic far memory system. Jiffy has a standard
distributed data store architecture (Figure 5(a)): resources are
partitioned into fixed-sized slices (blocks of memory) across
a number of resource servers (memory servers), identified
by their unique sliceIDs (referred to as blockIDs in Jiffy).
A logically centralized controller tracks the available and
allocated slices across the various resource servers and stores
a mapping that translates sliceIDs to the corresponding
resource server. We have implemented Karma as a new
resource allocation algorithm at the Jiffy controller3.

3Karma can thus directly piggyback on Jiffy’s existing mechanisms for
controller fault tolerance [41, Section 4] to persist its state across failures.

Users interact with the system through a client library
that provides APIs for requesting resource allocation and
accessing allocated resource slices. Users express their
demands to the controller through resource requests which
specify the number of slices required. The controller
periodically performs resource allocation using the Karma
algorithm and provides users with the sliceIDs of the resource
slices that are allocated to them. Users can then directly
access these slices from the resource servers through read
or write API calls without requiring controller interposition.
In the rest of this section, we discuss the key data structures
and mechanisms required to integrate Karma with Jiffy.

Karma employs three key data structures to efficiently
implement the policies and mechanisms outlined in §3:
karmaPool, a credit map, and a rate map.

karmaPool. Recall from §3.2 that the karmaPool tracks
the pool of donated slices and shared slices, and needs to
be updated when resource allocations change. Also, the
resource allocation algorithm should be able to efficiently
select donated slices from a particular user while satisfying
borrower demands (§3.2.2). To this end, the karmaPool is
implemented as a hash map, mapping userIDs to the list of
sliceIDs corresponding to slices donated by them. The list of
sliceIDs corresponding to shared slices is stored in a separate
entry of the same hash map. When resource allocations
change, the corresponding sliceIDs are added to or removed
from the corresponding lists. As such, karmaPool supports
all updates in O(1) time.

Credit Tracking. Karma employs two data structures for
tracking and allocating credits across various users: a rate
map and a credit map. The rate map maps each user to the
rate at which it earns or spends its credits every quantum, that
is, the difference between the user’s guaranteed share and
the number of its allocated slices in that quantum. The rate is
positive when the user is earning (that is, has donated slices)
and negative when it is spending credits (that is, has borrowed
slices), respectively. The credit map, on the other hand, maps
each user to a counter corresponding to its current credits.

Separating the rate map and credit map facilitates efficient
credit tracking at each quantum: Karma simply iterates
through the rate map entries, and updates the credit counters
in the credit map based on the corresponding user credit
rates. Since the rate map only contains entries for users with
non-zero rates, Karma can efficiently update credits for only
the relevant users. At the same time, Employing a hash-map
for each of them permits O(1) updates to the user credit rate
or number of credits while performing resource allocation.

Borrowing and donating slices. Karma realizes its credit-
based prioritized allocation algorithm (§3.2) using two
modules at the controller. First is a slice allocator that
maintains the karmaPool to track and update slice allocations
across users, and, second a credit tracker that maintains the
current number of credits for any user (via Credit Map) and
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Figure 5: Karma Design. See §4 for details.

how it should be updated (via Rate Map). Figure 5(b) shows
these modules along with the data structures they manage.

The slice allocator intercepts resource requests from
users, periodically executes the Karma resource allocation
algorithm (Algorithm 1) to compute allocations based on
the user demands, and updates slices in the karmaPool
accordingly. It interacts with the credit tracker to query and
update user credits. A naïve implementation of Algorithm 1
runs in O(n · f · logn) time, where n is the number of users,
and f is the fair share4. Instead of computing allocations
one slice at a time, we use an optimized implementation that
carefully computes them in a batched fashion (full details are
provided in [71]). This enables the slice allocator to support
resource allocation at fine-grained timescales.

Consistent hand-off of resources. Since users are allowed
to directly access slices from resource servers, we need to
ensure consistent hand-off of slices from one user to another
when slices are reallocated. For example, say user U1 has a
slice during a given quantum, and in the next quantum, this
slice is allocated to user U2. We need to ensure that (1) U1’s
data is flushed to persistent storage before U2 overwrites it (2)
U1 should not be able to read/write to the slice after U2 has
accessed it (for example, there could be in-flight read/write
requests to the slice which were initiated before U1 gets to
know it’s allocation changed).

Karma ensures the above by maintaining a monotonically
increasing sequence number and current userID for each
slice, at both the controller (within the karmaPool) and the
resource servers (as slice metadata). On slice allocation, its
userID is updated and its sequence number is incremented
at the controller, and the sequence number is returned to the
user. Subsequent user reads and writes to the slice specify this
userID and sequence number. A slice read succeeds only if
the accompanying sequence number is the same as the current
slice sequence number, while a slice write succeeds only if
the accompanying sequence number is the same or greater
than the current sequence number. If a write necessitates
an overwrite of the current slice content and metadata, the

4The loop in Line 10 of Algorithm 1 takes O(n · f ) iterations and each
iteration would take O(logn) time to find the donor/borrower with the mini-
mum/maximum credits (if we were to maintain min/max heaps for the donor
and borrower sets).

old slice content is transparently flushed persistent storage
(e.g., S3) before the overwrite. In our example above, U2’s
first access to the slice after re-allocation will trigger a flush
of U1’s data to S3 and update the slice sequence number.
Following this U1’s accesses to this slice will fail since the
current sequence number of the slices is higher. U1 can then
read/write this data from persistent storage. Implementing
consistent resource hand-off in Jiffy required minor changes
to the controller (to track sequence numbers per slice),
memory servers (to perform sequence number checking), and
the client library (to tag requests with sequence numbers).

5 Evaluation

We have already established Karma properties theoretically in
§3. In this section, we evaluate how Karma’s properties trans-
late to application-layer benefits over an Amazon EC2 testbed
with real-world workloads. Our evaluation demonstrates that:
• Karma reduces the performance disparity between different

users by ∼ 2.4× relative to classic max-min fairness,
without compromising on system-wide utilization or
average performance (§5.1);

• Karma incentivizes users to share resources, quantifying
Karma’s online strategy-proofness property (§5.2);

We primarily focus on the shared cache use case from §2
for the following reason. While datasets for the shared data
analytics clusters use case are publicly available (e.g., Google
and Snowflake datasets), they do not provide user queries that
may impact our final conclusions. For the shared cache use
case, we do have all the information we need: these datasets
provide information on the working set size of each user
over time, which can be fed into an end-to-end multi-tenant
in-memory cache system running on Amazon EC2. We, thus,
focus on this use case.

Experimental setup. Our experimental setup consists of a
distributed elastic in-memory cache shared across multiple
users backed by a remote persistent storage system. For the
cache, we use Jiffy [41], augmented with our implementation
of Karma (§4) and other evaluated schemes. If the evaluated
scheme does not allocate sufficient slices to a user on Jiffy
to fit its entire working set, the remaining data is accessed
from remote persistent storage. When slices are reallocated
between users across quanta, the corresponding data is moved
between Jiffy and persistent storage through the consistent
hand-off mechanism described in §4. We deployed our setup
on Amazon EC2 using c5n.9xlarge instances (36 vCPUs,
96GB DRAM, 50Gbps network bandwidth). We host the
Jiffy controller and resource servers across 7 instances and
use 25 instances for the users/clients that issue queries to
Jiffy. We use Amazon S3 as the persistent storage system.

Workload. We use the publicly available Snowflake
dataset [72] that provides dynamic user demands in terms
of memory usage for each customer from Snowflake’s
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Figure 6: Understanding Karma benefits. (a) Karma enables a much tighter throughput distribution across users (colored
arrows show the absolute gap between median and minimum throughput across users). (b, c) It also enables a tighter distribution
of average and tail latencies across users (again, colored arrows show the absolute gap between median and maximum latency
across users). (d) Karma achieves much lower throughput disparity—ratio of median to minimum values of throughput across
users—than classic max-min fairness. (e) It also significantly reduces the gap between the users with minimum and maximum
overall allocations, (f) while achieving similar system-wide performance as max-min fairness.

production cluster. We use these demands as the dynamic
working set size for individual users. For each user, we
issue data access queries using the standard YCSB-A
workload [20] (50% read, 50% write) with uniform random
access distribution, with queries during each quantum
being sampled (according to the YCSB parameters) within
the instantaneous working set size of that user. If a query
references data that is currently cached in Jiffy, then it is
serviced directly from the corresponding resource server;
otherwise, it is serviced from the persistent storage.

Default parameters. Unless specified otherwise, we
randomly choose 100 users (out of ∼ 2000 users) over a
randomly-chosen 15 minute time window (out of a 14-day
period) in the Snowflake workload. To test for extreme
scenarios, we set the length of each quantum to be one second
(that is, a total of 900 quanta). The fair share of each user
is 10 slices, and the total memory capacity of the system is
set to the number of users times the fair share (1000 slices).
Each slice is 128MB in size, while each query corresponds
to a read or write to a 1KB chunk of data (the default size
in the YCSB workload).

Compared schemes. We compare Karma to strict partitioning
and max-min fairness, since they correspond to the two most
popular fair allocation schemes, and represent extremes in re-
source allocation and performance. When evaluating Karma,

we set the number of initial credits to a large value5. The
fraction of fair share that is guaranteed (α) is 0.5 by default.

Metrics. We evaluate system-wide resource utilization,
along with both per-user and system-wide performance—key
metrics for any resource allocation mechanism. For perfor-
mance, we measure both throughput and latency (average
and 99.9th percentile tail). We define performance disparity
for an allocation scheme as the ratio of median to minimum
performance (that is, throughput or latency) observed across
various users. For any given user, we define welfare over
time t as ∑t allocations

∑t demands , that is, the fraction of its total demands
satisfied by the allocation scheme. We define fairness as
minuserswelfare
maxuserswelfare (higher is better, 1 is optimal), as a measure of
welfare disparity between users.

5.1 Understanding Karma Benefits
We now evaluate Karma’s benefits in terms of reducing
disparity across users’ application-level performance as well
as resource allocation.

Karma reduces performance disparity between users.
Figure 6(a) shows the throughput distribution across users for
our compared schemes; the y-axis is presented in log-scale to

5As discussed in §3.4, the precise value is unimportant. Here, we set it to
900,000, so that even if a user was allocated the full system capacity for the
entire duration (1000×900) it would not run out of credits.
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Figure 7: Karma incentivizes resource sharing. All metrics are computed as averages (with error bars) for three random
selections of users being non-conformant. See §5.2 for details.

focus on the users at the tail of the distribution, which observe
the most performance disparity. Since Karma strives to bal-
ance fairness over time, it significantly narrows the throughput
distribution across users compared to the two baselines: the
ratio between the maximum and minimum throughput across
all users is 7.8× with strict partitioning and 4.3× with max-
min fairness, but only 1.8× for Karma. As Figure 6(d) shows,
Karma lowers the throughput disparity across users by 2.4×
compared to max-min fairness. Karma also reduces average
latency disparity (Figure 6(b)) by 2.4× and 99.9th percentile
latency disparity (Figure 6(c)) by 1.2× compared to max-min
fairness by enabling a tighter distribution for both latencies.

Equitability in performance across users for a scheme is
closely tied to how fairly resources are allocated across users.
Specifically, because of the large gap between elastic memory
(Jiffy) and S3 latencies (50–100×), accesses to slices in S3
result in significantly lower throughput than accesses to slices
in elastic memory. As a result, users’ average throughput
ends up being roughly proportional to their total allocation of
slices in elastic memory over time. Similarly, since a larger
total allocation results in a smaller fraction of requests going
to S3, average and tail latencies also reduce.

Karma reduces disparity in allocations. We now quantify
disparities in overall allocations obtained by users across our
compared schemes via our fairness metric in Figure 6(e). Due
to dynamic demands, strict partitioning exhibits very poor
fairness, since users with very bursty demands end up getting
much lower total allocations than users who have steady
demands6. While, max-min fairness observes better fairness
compared to strict partitioning, the best-off user still receives
4× higher allocation than the worst-off user, resulting in
poor absolute fairness. Karma achieves significantly better
fairness with the best-off user receiving only 1.5× higher
allocation than the worst-off user. It is able to achieve this by
prioritizing the allocation of resources beyond the fair share
to users with more credits (§3.2.2).

Karma achieves Pareto efficiency and high system-wide
performance. Karma achieves the same overall resource

6Note that only useful allocations are considered—strict partitioning guar-
antees a fixed allocation at all times, but resources may remain unused when
demand is low.

utilization as max-min fairness (∼ 95%). This is because
Karma is Pareto efficient (§3.3) similar to max-min fairness
and thus achieves near-optimal utilization. We find that the
optimal utilization is < 100% since some quanta observe
total user demands less than system capacity.

Max-min fairness observes 1.4× higher system-wide
throughput (that is, throughput aggregated across all users)
than strict partitioning (Figure 6(f)) since it permits alloca-
tions beyond the fair share, allowing more requests to be
served on faster elastic memory. Karma observes system-wide
performance similar to max-min fairness for similar reasons;
the slight variations are attributed to variance in S3 latencies.

5.2 Karma Incentives
We now empirically demonstrate that Karma incentivizes
users to donate resources instead of hoarding them, to
improve their own as well as overall system welfare. To
this end, we vary the fraction of users using Karma that are
conformant or non-conformant. A conformant user is truthful
about its demands and donates its resources when its demand
is less than its fair share. A non-conformant user, on the other
hand, always asks for the maximum of its demand or its fair
share (that is, it over-reports its demand during some quanta).

Resource utilization and system-wide performance
improve with more conformant users. Figure 7(a) and
Figure 7(b) show that Karma’s system-wide utilization and
performance improve as the fraction of conformant users in-
creases. This is because as more users donate resources when
they do not need them, other users can use these resources,
improving overall utilization and performance. When none
of the users are conformant, since no one ever donates any
resources, Karma essentially reduces to strict partitioning,
hence achieving low overall utilization and performance.
When all users are conformant, Karma achieves optimal uti-
lization and performance, similar to classic max-min fairness.

Becoming conformant improves user welfare. Figure 7(c)
shows the average welfare gain non-conformant users
would achieve if they were to become conformant. When
non-conformant users become conformant, it leads to
significant (1.17–1.6×) welfare gains for them, empirically
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Figure 8: Sensitivity analysis with varying instantaneous guarantee (α) (a, b) Karma matches the resource utilization and
system-wide performance of max-min fairness independent of α (c) Smaller values of α result in improved long-term fairness.

validating Karma’s property that users have nothing to gain by
over-reporting their demand (§3.3). Note that the gain varies
with the number of conformant users in the system—the gains
from non-conformant users becoming conformant are higher
when the percentage of conformant users is low. As expected,
the gains show diminishing returns as more users in the sys-
tem become conformant as overall utilization is already high.

5.3 Karma Sensitivity Analysis

We now show sensitivity analysis with the only parameter
in the Karma algorithm–the instantaneous guarantee (α).
Figure 8 shows the resource utilization, system-wide
performance, and fairness with α varying between 0 and
1. Karma continues to match the resource utilization and
system-wide performance of max-min fairness independent
of α (Figure 8(a) and Figure 8(b)). Varying α has an impact
on the long-term fairness achieved by Karma (Figure 8(c)),
with smaller values of α resulting in improved fairness, thus
validating our discussion in §3.4. Even for α = 1, Karma
is able to achieve significantly better fairness compared
to max-min fairness. This is because, while it allocates
resources up to the fair share identically to max-min fairness,
it prioritizes allocation beyond the fair share based on credits.

6 Related Work
There is a large and active body of work on resource
allocation and scheduling, exploring various models and
settings; it would be a futile attempt to compare Karma with
each individual work. We do not know of any other resource
allocation mechanism that guarantees Pareto efficiency,
strategy-proofness, and fairness similar to Karma for the case
of dynamic user demands; nevertheless, we discuss below
the most closely related works.

Max-min fairness variants in cloud resource allocation and
cluster scheduling. Many works study variants of max-min
fairness for cloud resource allocation and cluster schedul-
ing [8,10,17,30–33,44,46,57–59,64,66,77], including recent
work on ML job scheduling [15,34,47,50,55]. We make three
important notes here. First, while dominant resource fairness

(DRF) [30] has generalized max-min fairness to multiple
resources, it makes the same assumptions as max-min
fairness: user demands being static over time; our goals are
different: we have identified and resolved the problems with
max-min fairness for the case of a single resource but over
dynamic user demands. It is an interesting open problem to
generalize Karma for the case of multiple resources.

Second, cluster scheduling has been studied under several
metrics beyond fair resource allocation (e.g., job completion
time, data locality, priorities, etc.). Themis [47] considers
long-term fairness but defines a new ML workload-specific
notion of fairness, and is therefore not directly comparable
to Karma. Our goals are most aligned with those works that
study fair allocation under strategic users while guaranteeing
Pareto efficiency. To that end, the closest to Karma is
CARBYNE [32]. However, CARBYNE not only assumes
non-strategic users but also, for the single-resource case
(the focus of this paper), CARBYNE converges to max-min
fairness. As discussed earlier, generalizing Karma to multiple
resources remains an open problem; a solution for that
problem must be compared against CARBYNE.

Finally, fairness in application-perceived performance
is only indirectly related to fairness in resource allocation:
other factors like software systems (e.g., hypervisors
and storage systems) and resource preemption granu-
larity can impact performance. Similar to other mecha-
nisms [9, 10, 16, 30–33, 39, 45, 46, 59, 60, 66, 67, 72, 77, 80],
Karma’s properties are independent of these system-level
factors; while our evaluation shows that Karma properties
translate to application-level benefits, absolute numbers
depend on the underlying system implementation.

Allocation of time-shared resources. Generalized Processor
Sharing (GPS) [54] is an idealized algorithm for sharing
a network link which assumes that traffic is infinitesi-
mally divisible (fluid model). For equal-sized packets and
equal flow weights, GPS reduces to Uniform Processor
Sharing [54, Section 2], which is equivalent to max-min
fairness. GPS guarantees fairness over arbitrary time intervals
only under the assumption that flows are continuously
backlogged [54, Section 2]. This assumption implies that



flows always have demand greater than their fair share,
making it trivial to guarantee a max-min fair share of the
network bandwidth over arbitrary time intervals. Classical
fair-queueing algorithms [11, 24, 48, 65, 83] in computer
networks approximate GPS with the constraint of packet-
by-packet scheduling. Under this constraint, varying-sized
packets and different flow weights make it hard to realize
fairness efficiently; thus, the technical question that these
algorithms solve is to achieve fairness approximately equal to
GPS with minimal complexity. Karma focuses on a different
problem—we show that GPS guarantees (equivalent to
max-min fairness) are not sufficient when demands are dy-
namic and present new mechanisms to achieve fairness while
maintaining other properties for such dynamic demands.

Stride [74] scheduling essentially approximates GPS in the
context of CPU scheduling [74, Section 7], and thus the above
discussion applies to it as well. DRF-Q [29] generalizes
DRF to support both space and time-shared resources, but
is explicitly designed to be memoryless similar to max-min
fairness, and therefore suffers from similar issues for
long-term fairness. Least Attained Service (LAS) [13, 43, 53]
is a classical job scheduling algorithm that has been applied
to packet scheduling [13], GPU cluster scheduling [34],
and memory controller scheduling [42]. For α = 0, Karma
behaves similarly to LAS, and for α>0, Karma generalizes
LAS with instantaneous guarantees. Moreover, our results
from §3.3 establish strategy-proofness properties of LAS for
dynamic user demands, which may be of independent interest.

Theory works. Several recent papers in the theory commu-
nity study the problem of resource allocation for dynamic user
demands. Freeman et al. [26] and Hossain et al. [37] consider
dynamic demands under a different setting, where users can
benefit when they are allocated resources above their demand;
under this setting, they focus on instantaneous fairness (which
is non-trivial since users can be allocated resources beyond
their demand). Karma instead focuses on long-term fairness
under the traditional model, where users do not benefit from
resources beyond their demands. Sadok et al. [62] present
minor improvements over max-min fairness for dynamic de-
mands. Their mechanism allocates resources in a strategy-
proof manner according to max-min fairness while marginally
penalizing users with larger past allocations using a parameter
δ∈ [0,1). For both δ=0 and δ→1, the penalty goes to 0 for
every past allocation, and the mechanism becomes identical
to max-min fairness; for other values of δ, the penalty is at
most a δ(1−δ)≤1/4 fraction of past allocation surplus, and
it reduces exponentially with time (users who were allocated
large amounts of resources further in the past receive an even
smaller penalty). Thus, for all values of δ, and in particular, for
δ=0 and δ→1, their mechanism suffers from the same prob-
lems as max-min fairness. Aleksandrov et al. [7] and Zeng
et al. [82] consider dynamic demands, but in a significantly
different setting than ours where resources arrive over time.

Pricing- and credit-based resource allocation. Another
stream of work related to Karma is pricing-based and bidding-
based mechanisms for resource allocation, e.g., spot instance
marketplace and virtual machine auctions [1, 6, 27, 76, 84, 85].
While interesting, this line of work does not focus on fair re-
source allocation and is not applicable to use cases that Karma
targets. XChange [75] proposes a market-based approach to
fair resource allocation in multi-core architectures but focuses
on instantaneous fairness rather than long-term fairness, un-
like Karma. It assigns a “budget” of virtual currency to each
user which can be used to bid for resources. This budget
is however reset during every time quantum, and therefore
information about past allocations is not carried over.

Credits are used in many other game theoretic con-
texts [25,51,61], e.g., in peer-to-peer and cooperative caching
settings to incentivize good behavior among participants with
static demands [21,56,78]. However, we are not aware of any
credit-based mechanisms that deal with resource allocation
in the context of dynamic user demands.

7 Conclusion
This paper builds upon the observation that the classical
max-min fairness algorithm for resource allocation loses
one or more of its desirable properties—Pareto efficiency,
strategy-proofness, and/or fairness—for the realistic case of
dynamic user demands. We present Karma, a new resource
allocation mechanism for dynamic user demands, and
theoretically establish Karma guarantees related to Pareto
efficiency, strategy-proofness, and fairness for dynamic user
demands. Experimental evaluation of a realization of Karma
in a multi-tenant elastic memory system demonstrates that
Karma’s theoretical properties translate well into practice: it
reduces application-level performance disparity by as much as
2.4× when compared to max-min fairness while maintaining
high resource utilization and system-wide performance.

Karma opens several exciting avenues for future research.
These include (but are not limited to) extending Karma
theoretical analysis for α>0, generalizing Karma to allocate
multiple resource types (similar to DRF), extending Karma
to handle all-or-nothing or gang-scheduling constraints
which are prevalent in the context of GPU resource alloca-
tion [15, 47], and applying Karma to other use cases such as
inter-datacenter network bandwidth allocation and resource
allocation for burstable VMs in the cloud.
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