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ABSTRACT
We present Prompt Cache, an approach for accelerating inference for large language models (LLM) by reusing
attention states across different LLM prompts. Many input prompts have overlapping text segments, such as
system messages, prompt templates, and documents provided for context. Our key insight is that by precomputing
and storing the attention states of these frequently occurring text segments on the inference server, we can
efficiently reuse them when these segments appear in user prompts. Prompt Cache employs a schema to explicitly
define such reusable text segments, called prompt modules. The schema ensures positional accuracy during
attention state reuse and provides users with an interface to access cached states in their prompt. Using a prototype
implementation, we evaluate Prompt Cache across several LLMs. We show that Prompt Cache significantly reduce
latency in time-to-first-token, especially for longer prompts such as document-based question answering and
recommendations. The improvements range from 8× for GPU-based inference to 60× for CPU-based inference,
all while maintaining output accuracy and without the need for model parameter modifications.

1 INTRODUCTION

A substantial fraction of large language model (LLM)
prompts are reused frequently. For example, prompts usu-
ally commence with identical “system messages” that pro-
vide initial guidelines for its functionality. Documents can
also overlap in multiple prompts. In a wide range of long-
context LLM applications, such as legal analysis (Cui et al.,
2023; Nay et al., 2023), healthcare applications (Steinberg
et al., 2021; Rasmy et al., 2021), and education (Shen et al.,
2021), the prompt includes one or several documents from
a pool. Additionally, prompts are often formatted with
reusable templates (White et al., 2023). Such examples are
common in LLM for robotics (Huang et al., 2022; Driess
et al., 2023), and tool learning (Qin et al., 2023). This fur-
ther results in a high degree of text overlap between prompts
leveraging the same template.

We introduce a novel technique termed Prompt Cache to
reduce the computational overhead in generative LLM in-
ference. Prompt Cache is motivated by the observation
that input prompts served by LLM servers often share com-
ponents in a highly structured manner. The key idea is
to precompute attention states of the frequently revisited
prompt segments in memory for reuse.
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Reusing attention states is a popular strategy for accelerating
the service of a single prompt (Ott et al., 2019; Shoeybi
et al., 2019; Pope et al., 2022). The existing approach, often
referred to as Key-Value (KV) Cache, reuses the key-value
attention states of input tokens during the autoregressive
token generation. This eliminates the need to compute full
attention for every token generation (§ 2.2). By caching the
key-value attention computed for the previously generated
token, each token generation requires the computation of
key-value attention states only once.

Building on top of KV Cache, Prompt Cache extends atten-
tion state reuse from a single prompt to multiple prompts
by making attention state reuse modular. In our approach,
frequently reused text segments are individually precom-
puted and stored in memory. When such “cached” segments
appear in the input prompt, the system uses the precomputed
key-value attention states from memory instead of recom-
puting them. As a result, attention computations are only
required for uncached text segments. Figure 1 illustrates
the difference between full autoregressive generation, KV
Cache, and Prompt Cache. We note that the performance
advantage becomes more pronounced as the size of cached
segments grows since the computation overhead of attention
states scales quadratically with input sequence size (Keles
et al., 2022; Tay et al., 2023) while the storage overhead of
Prompt Cache scales linearly.

Two challenges arise when reusing attention states across
prompts. First, attention states are position-dependent due to
the positional encoding in Transformers. Thus, the attention
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(a) Autoregressive token generation
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(c) Generation with Prompt Cache

Figure 1. Comparison of LLM token generation methods, each showing three steps ( 1 to 3 ). Each box indicates a token. Blue boxes
represent the prompt. (a) An LLM takes in a prompt (blue tokens) and predicts the next token ( A ) ( 1 ). It then appends the generated
token ( A ) to the prompt to predict the next token ( B ) ( 2 ). This process, called autoregressive, continues until a stop condition is met.
(b) KV Cache computes time attention states for the prompt only once ( 1 ) and reuses them in the following steps; (c) Prompt Cache
reuses the KV state across services to bypass prompt attention computation. Prompt Cache populates its cache when a schema is loaded
and reuses the cached states for prompts that are derived from the schema ( 1 ). Figure 2 further elaborates Step 1 .

states of a text segment can only be reused if the segment
appears at the same position. Second, the system must be
able to efficiently recognize a text segment whose attention
states may have been cached in order to reuse.

To tackle these two problems, Prompt Cache combines two
ideas. The first is to make the structure of a prompt ex-
plicit with a Prompt Markup Language (PML). PML makes
reusable text segments explicit as modules, i.e., prompt mod-
ule. It not only solves the second problem above but opens
the door for solving the first, since each prompt module can
be assigned with unique position IDs. Our second idea is
our empirical finding that LLMs can operate on attention
states with discontinuous position IDs. This means that we
can extract different segment of attention states and concate-
nate them to formulate new meanings. We leverage this to
enable users to select prompt modules based on their needs,
or even update some prompt modules during the runtime.

We explain how Prompt Cache works in §3. In summary, an
LLM user writes their prompts in PML, with the intention
that they may reuse the attention states based on prompt
modules. Importantly, they must derive a prompt from
a schema, which is also written in PML. Figure 2 shows
a example prompt based on an example schema. When
Prompt Cache receives a prompt, it first processes its schema
and computes the attention states for its prompt modules.
It reuses these states for the prompt modules in the prompt
and other prompts derived from the same schema.

In §4, we report a prototype implementation of Prompt
Cache on top of the HuggingFace transformers library
(Wolf et al., 2020). While Prompt Cache can work with
any Transformer architecture compatible with KV Cache,
we experiment with three popular Transformer architec-
tures powering the following open-sourced LLMs: Llama2
(Touvron et al., 2023), Falcon (Penedo et al., 2023), and
MPT (MosaicML, 2023). We consider two types of memory

for storing prompt modules: CPU and GPU memory. While
CPU memory can scale to terabyte levels, it brings the over-
head of host-to-device memory copying. In contrast, GPU
memory does not require coping but has limited capacity.

Using the prototype, we conduct an extensive benchmark
evaluation to examine the performance and quantify the ac-
curacy of Prompt Cache across various long-context datasets
(§5). We employ the LongBench suite (Bai et al., 2023),
which includes recommendation and question-answering
(QA) tasks based on multiple documents. In our evaluation,
Prompt Cache reduces time-to-first-token (TTFT) latency
from 1.5× to 10× for GPU inference with prompt modules
on GPU memory and from 20× to 70× for CPU inference,
all without any significant accuracy loss. Additionally, we
analyze the memory overhead of the precomputed attention
states for each model and discuss directions for optimizing
the memory footprint of Prompt Cache. We subsequently
showcase several generative tasks, including personalization,
code generation, and parameterized prompts, to demonstrate
the expressiveness of the prompt schema and performance
improvement with negligible quality degradation.

In our present study, we mainly focus on techniques for mod-
ular attention reuse. However, we foresee Prompt Cache
being utilized as a foundational component for future LLM
serving systems. Such systems could incorporate enhanced
prompt module management and GPU cache replacement
strategies, optimizing the advantages of both host DRAM
and GPU HBM.

2 BACKGROUND AND RELATED WORK

Prompt Cache builds on the ideas of the KV Cache, i.e., key-
value attention state reuse during autoregressive decoding in
LLMs. This section reviews autoregressive token generation
in LLMs, explains how the incorporation of KV Cache
can speed up the token generation process, identifies its
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approximations, and surveys recent work that leverages the
KV Cache for acceleration. We also briefly discuss other
techniques for accelerating LLM inference.

2.1 Autoregressive Token Generation

An LLM generates output tokens autoregressively (Radford
et al., 2018). It starts with an initial input, often called a
prompt, and generates the next token based on the prompt.
The model then appends the token to the prompt and uses it
to generate the next token. The generation process continues
until a stopping condition is met. This could be after a
predetermined number of tokens, upon generating a special
end-of-sequence token, or when the generated sequence
reaches a satisfactory level of coherence or completeness.
Importantly, in each step, the model takes the entire prompt
and tokens generated so far as the input.

2.2 Key-Value Cache

Autoregressive token generation described above incurs sub-
stantial computation due to the self-attention mechanism
being applied over the entirety of input during each step. To
ameliorate this, the Key-Value (KV) Cache mechanism (Ott
et al., 2019; Shoeybi et al., 2019; Pope et al., 2022) is fre-
quently used. This technique computes the key and value
embeddings for each token only once throughout the autore-
gressive token generation.

To elaborate, denote a user prompt as a sequence of
n tokens: s1, s2, . . . , sn, and the subsequently gen-
erated k tokens as sn+1, sn+2, . . . , sn+k. In full
autoregressive token generation, the attention states
{(k1, v1), (k2, v2), . . . , (kn+k, vn+k)} are fully recalcu-
lated at every step. In contrast, KV Cache initially com-
putes attention states for the input, represented by S0 =
{(ki, vi)|i ≤ n}, and caches them in memory. For ev-
ery subsequent step j ≤ k, the model reuses the cached
values Sj = {(ki, vi)|i < n + j} to compute the atten-
tion state (kn+j , vn+j) of the new token sn+j . This ap-
proach significantly reduces the computation required for
self-attention. Specifically, the computation in each step,
measured in FLOPs for matrix operations, is reduced from
(Q × X) × (K × X)T × (V × X) operations—where
X ∈ R(n+j)×d represents the input embedding matrix, and
Q,K, V ∈ Rd×d—to xTQ + xTK + xTV +XTX oper-
ations, with x ∈ Rd. After each step, the newly computed
attention states are appended to the cache for subsequent
use, such that Sj = Sj−1 ∪ {(kn+j , vn+j)}.

The KV Cache optimizes computational efficiency at the
expense of precision. Instead of computing the attention
state for token sj over the entire sequence {si|i < n+ k},
the computation is restricted to the sequence available at step
j, namely {si|i < n+ j}. Despite this trade-off, empirical
results have shown that output quality is largely maintained,

making it a popular choice for LLM serving systems.

The KV Cache has catalyzed further exploration into LLM
acceleration. Ensuing studies have either centered on refin-
ing memory management for KV Cache, as demonstrated
in paged attention (Kwon et al., 2023), on pruning super-
fluous KV Cache data (Zhang et al., 2023), or compressing
it (Liu et al., 2023b). There are some preliminary works
that explore KV Cache reuse across different requests as
well. (Feng et al., 2023) reuse memorized attention states
based on an embedding similarity metric. Paged attention
also demonstrates simple prefix sharing, where different
prompts with an identical prefix share KV Cache. However,
existing approaches are specific to certain scenarios, while
we investigate attention reuse for general LLM prompts.

2.3 Other Methods for Low-Latency LLM Inference

Prompt Cache introduces an orthogonal optimization strat-
egy that augments existing systems dedicated to efficient
LLM inference. This includes systems that utilize multiple
GPUs for inference (Aminabadi et al., 2022) and those with
high-performance GPU kernels for softmax attention score
computation (Dao et al., 2022). Although our current fo-
cus is on achieving low-latency inference in LLMs, Prompt
Cache can also benefit systems aiming for high through-
put (Sheng et al., 2023) as well.

3 DESIGN OF PROMPT CACHE

The effectiveness of the KV Cache leads us to the next
question: Can attention states be reused across multiple
inference requests?

We observe that different prompts often have overlapping
text segments. For example, identical “system messages”,
or metaprompts are frequently inserted at the beginning of
a prompt to elicit desired responses from an LLM. For an-
other example, in many legal and medical applications of
LLMs (Cui et al., 2023; Steinberg et al., 2021; Rasmy et al.,
2021), the same set of documents is often provided as con-
text to different prompts. Finally, reusable prompt formats,
i.e., prompt templates, are commonly used by LLM applica-
tions in robotics (Driess et al., 2023) and tool learning (Qin
et al., 2023).

In this section, we describe our approach called Prompt
Cache, which answers the above question affirmatively.
Prompt Cache improves computational efficiency through
inter-request attention state reuse by leveraging the text
shared by prompts.

3.1 Overview

The attention states of a text segment can only be reused
if the segment appears at the same position in the LLM
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Schema
<schema name="cities">
  <module name="city-info">...
  </module> 
  <module name="trip-plan"> ...
    <param name="duration" len=2/>
  </module>
  <module name="tokyo"> ... 
  </module>
  <module name="miami"> ... 
  </module> ... 
</schema>

Prompt

LLM

Prompt attention states

<prompt schema="cities">
  <trip-plan duration=  "3 days"  /> <miami/>  Highlight the surf spots.
</prompt>

Prompt Cache

empty space

1

2 2

3 4

5

<city-info/> <trip-plan/> <tokyo/> <miami/> <paris/>

Figure 2. Reuse mechanism in Prompt Cache: (i) First, PML (§3.2) makes reusable prompt modules explicit in both Schema and Prompt.
A prompt module can have parameters like trip-plan. A prompt importing the module supplies a value (3 days) to the parameter
(duration). The prompt can include new text segments in place of excluded modules and parameters and at the end. (ii) Second,
prompt module encoding (§ 3.3) precomputes attention states ( 1 ) for all modules in the schema and caches them for future reuse. (iii)
Third, when the prompt is served, Prompt Cache employs cached inference (§3.4): it retrieves the attention states cached for imported
prompt modules ( 2 , computes them for parameters ( 3 ) and new text segments ( 4 ), and finally concatenates them to produce the
attention states for the entire prompt ( 5 ). This figure is an elaboration of Step 1 in Figure 1c.

input. This is because transformer architectures integrate
positional embeddings into the (k, v) attention states. This
is not a problem for KV Cache serving a single prompt: the
same prompt text is located at the same position, i.e., the
beginning of the input, in all steps.

Shared text segments, on the other hand, can appear in differ-
ent positions in different prompts. To reuse their attention
states across prompts, a caching system must tackle two
problems. First, it must allow reuse despite a text segment
appearing in different positions in different prompts. Sec-
ond, the system must be able to efficiently recognize a text
segment whose attention states may have been cached in
order to reuse.

To tackle these two problems, we combine two ideas. The
first is to make the structure of a prompt explicit with a
Prompt Markup Language (PML). As illustrated by Figure 2,
the PML makes reusable text segments explicit as modules,
i.e., prompt module. It not only solves the second problem
above but opens the door for solving the first, since each
prompt module can be assigned with unique position IDs.

Our second idea is our empirical observation that LLMs can
operate on attention states with discontinuous position IDs.
For instance, we can extract different segment of attention
states and concatenate them to formulate new meanings.
Even though such concatenated attention states may miss
some position IDs in their embeddings, it does not affect the
output quality since the relative positional semantics are still
retained. We leverage this to enable users to select prompt
modules based on their needs.

Prompt Cache puts these two ideas together as follows. An
LLM user writes their prompts in PML, with the intention
that they may reuse the attention states based on prompt
modules. Importantly, they must derive a prompt from

a schema, which is also written in PML. Figure 2 shows
a example prompt based on an example schema. When
Prompt Cache receives a prompt, it first processes its schema
and computes the attention states for its prompt modules.
It reuses these states for the prompt modules in the prompt
and other prompts derived from the same schema.

We detail the design of PML in §3.2 with a focus on tech-
niques that maximize the opportunity of reusing. We explain
how Prompt Cache computes the attention states of prompt
modules in a schema in §3.3. We explain how Prompt
Cache reuse attention states from a schema for the service
of a prompt in §3.4.

The modular KV cache construction in Prompt Cache bears
resemblance to the approximations observed in locally
masked attention (Beltagy et al., 2020; Tay et al., 2023),
which optimizes computations by setting a limited window
for attention score calculations rather than spanning its at-
tention across every token in its input sequence. Consider a
scenario within Prompt Cache where each prompt module
is encoded independently. Given that attention states are
strictly calculated within the confines of the prompt mod-
ule, this closely mirrors the setup of an attention mask that
screens out sequences external to the prompt module. There-
fore, the approximation made by Prompt Cache is to limit
the attention window to each prompt module. We note that
employing such attention masks does not necessarily reduce
output quality, as we will discuss in §5. In some contexts,
these masks may even introduce beneficial inductive biases
by effectively filtering out irrelevant information.

3.2 Prompt Markup Language (PML)

We next describe the key features of PML that is used to
describe both schemas and prompts.
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3.2.1 Schema vs. Prompt

A schema is a document that defines prompt modules and
delineates their relative positions and hierarchies. Each
schema has a unique identifier (via the name attribute) and
designates prompt modules with the <module> tag. Texts
not enclosed by <module> tags are treated as anonymous
prompt modules and are always included in prompts that
utilize the schema.

For an LLM user, the schema serves as an interface to create
and reuse attention states for prompt modules. The user can
construct a prompt from a schema, with the <prompt> tag.
This tag specifies the schema to use through the schema

attribute, lists the prompt modules to import, and adds any
additional (non-cached) instructions. For example, to import
the module miami from the schema in Figure 2, one would
express it as <miami/>. Prompt Cache will only compute
the attention states for the text that is not specified in the
schema, e.g., Highlights the surf spots in Figure 2,
and reuse those for the imported modules, e.g., trip-plan
and miami in Figure 2.

3.2.2 Maximizing Reuse with Parameters

PML allows a prompt module to be parameterized in or-
der to maximize the reuse opportunities. A parameter is a
named placeholder with a specified length that can appear
anywhere in a prompt module in a schema. It is defined
using the <param> tag, with the name and len attributes
indicating its name and the maximum number of tokens
for the argument, respectively. When a prompt imports
the prompt module, it can supply a value to the parame-
ter. Figure 2 shows an example of a paramterized prompt
module (trip-plan) and how a prompt would include the
prompt module and supply a value (3 days) to its argument
(duration).

There are two important uses of parameterized prompt mod-
ules. First, it is common that a prompt module differs from
another only in some well-defined places. Parameters allow
users to provide specific arguments to customize the module
at runtime and still benefit from reusing. Figure 2 illustrates
this use case with trip-plan. This is especially useful for
templated prompts. Second, a parameter can be used to add
a “buffer” at the beginning or end of a prompt module in
the schema. This buffer allows the user to add an arbitrary
text segment in a prompt as long as the segment is no longer
than the parameter it replaces.

3.2.3 Other Features

Union modules: Certain prompt modules exhibit mutually
exclusive relationships. That is, within a set of modules,
only one should be selected. For instance, consider a prompt
that asks the LLM to suggest a book to read based on the

reader’s profile described by a prompt module. There could
be multiple prompt modules each describing a reader profile
but the prompt can include only one of them.

To accommodate these exclusive relationships, we introduce
the concept of a union for prompt modules. A union of
modules is denoted using the <union> tag. For example:

<union>
<module name="doc-en-US"> ... </module>
<module name="doc-zh-CN"> ... </module>

</union>

Prompt modules nested within the same union share the
same starting position ID. A union not only streamlines the
organization of the layout but also conserves position IDs
used to encode prompt modules. Further, the system can
utilize this structure for optimizations, such as prefetching.

While parameterized modules and unions appear to be simi-
lar, they are different in two aspects. First, as we will show
in §3.3, parameters and union modules are encoded in differ-
ent ways. Second, they serve different purposes: parameters
are used for minor inline modifications to maximize the
reuse of a module, while union modules are intended for
better prompt structure and more efficient use of position
IDs.

Nested modules: PML also supports nested modules to
express hierarchical prompt modules. That is, a prompt
module could include prompt modules or unions as compo-
nents.

Compatibility with LLM-specific template: Instruction-
tuned LLMs often adhere to specific templates to for-
mat conversations. For example, in Llama2, a single
interaction between the user and the assistant follows
the template: <s>[INST] user message [/INST]

assistant message </s>. To reduce the effort required
to manually format the prompt schema to match such tem-
plates for different LLMs, we introduce three dedicated
tags: <system> for system-level prompts, <user> for
user-generated prompts, and <assistant> for exemplar re-
sponses generated by the LLM. Prompt Cache dynamically
translates these specialized tags to align with the designated
prompt template of the LLM in use.

3.3 Encoding Schema

The first time the attention states of a prompt module are
needed, they must be computed, which we refer to as prompt
module encoding.

First, Prompt Cache extracts token sequences of a prompt
module from the schema. It then assigns position IDs to
each token. The starting position ID is determined by the
absolute location of the prompt module within the schema.
For instance, if two preceding prompt modules have token
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sequence sizes of 50 and 60 respectively, the prompt module
is assigned a starting position ID of 110. An exception exists
for the union modules. Since prompt modules within the
union start from the same positions, their token sequence
size is considered with the size of the largest child.

From the token sequences of the prompt module and the
corresponding position IDs, these are then passed to the
LLM to compute the (k, v) attention states. We note that
the assigned position IDs do not start from zero. This is
semantically acceptable since white spaces do not alter the
meaning of the precomputed text. However, many existing
transformer positional encoding implementations often re-
quire adaptations to accommodate discontinuous position
IDs, which we will discuss in (§ 4.2).

For encoding parameterized prompt modules, we use the
idea that having white space in a prompt does not affect
its semantics. Parameters are replaced by a predetermined
number of <unk> tokens, equivalent to their len value.
The position IDs corresponding to these <unk> tokens are
logged for future replacement. When this module is inte-
grated into a user’s prompt and paired with the relevant
arguments, the token sequences of these supplied arguments
adopt the position IDs previously linked with the <unk>

tokens. The resulting KV attention states then replace the
states initially allocated for the <unk> tokens. We note that
the length of the newly provided tokens can be smaller than
the specified parameter length, as trailing white spaces do
not change the semantics.

3.4 Cached Inference

When a prompt is provided to Prompt Cache, Prompt Cache
parses it to ensure alignment with the claimed schema. It
verifies the validity of the imported modules. Then, as
illustrated in Figure 2, Prompt Cache retrieves the (k, v)
attention states for the imported prompt modules from the
cache ( 2 ), computes those for new text segments ( 3 and
4 ), and concatenates them to produce the attention states

for the entire prompt ( 5 ).

To detail the process, Prompt Cache starts by concatenating
the KV state tensors corresponding to each imported prompt
module in the prompt. For instance, when a user prompt
utilizes modules A,B, the concatenated KV tensor is formu-
lated as: (kC , vC) = (concat(kA, kB), (concat(vA, vB)). It
is worth noting that the order of concatenation does not mat-
ter due to the permutation invariance of transformers (Dufter
et al., 2022). This step solely requires memory copy.

Then, Prompt Cache computes the attention states for the
segments of the prompt that are not cached, specifically,
token sequences not defined in the schema and arguments
for parameterized prompt modules. Prompt Cache first iden-
tifies the position IDs of uncached texts based on their posi-

tion relative to other utilized prompt modules. For example,
if the text is situated between module A and B, it is assigned
the position ID starting from the concluding positions of
A, assuming gaps exist between the positions of A and B.
Augments for parameterized prompt modules are assigned
to the position IDs of <unk> tokens. Subsequently, the to-
ken sequences and position IDs are aggregated and passed
to the LLM using (kC , vC) as a KV Cache, to compute the
attention states for the entire prompt.

It is important to note that the computational complexity for
generating subsequent tokens remains consistent with that of
KV Cache, as prompt modules are not employed beyond the
initial token. In essence, Prompt Cache primarily diminishes
the latency involved in producing the first token.

4 IMPLEMENTATION

We build a Prompt Cache prototype using the Hugging-
Face transformers library (Wolf et al., 2020) in PyTorch
and comprises 3K lines of Python code. We aim to seam-
lessly integrate with an existing LLM codebase and reuse
its weights. We implement Prompt Cache to use both CPU
and GPU memory to accommodate prompt modules and
evaluate it on both platforms.

4.1 Storing Prompt Modules in Memory

We store encoded prompt modules in two types of memory:
CPU memory (host DRAM) and GPU memory (HBM). To
manage tensors across both memory types, we employ the
PyTorch (Paszke et al., 2019) memory allocator. Beyond
simply pairing CPUs with prompt modules in CPU memory
and GPUs with GPU memory, we also enable GPUs to
access prompt modules stored in CPU memory. This is done
by copying the prompt modules from the host to the device
as needed. This process incurs a host-to-device memory
copy overhead. Nonetheless, it allows the GPU to leverage
the abundant CPU memory, which can scale up to terabyte
levels. As we will show in §5, the computational savings
from Prompt Cache more than compensate for the latencies
caused by memory copy operations.

Using GPUs exposes trade-offs between memory capacity
and latency: GPU memory is faster but limited in capacity,
while CPU memory can scale easily yet incurs additional
memory copy overhead. It appears feasible to contemplate
a caching mechanism that leverages both CPU and GPU
memory. We leave the development of a system that in-
corporates cache replacement and prefetching strategies to
future research.

4.2 Adapting Transformer Architectures

Implementing Prompt Cache requires support for discon-
tinuous position IDs (§3.2). Although the Transformers
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Baseline
Prompt Cache (CPU memory)
Prompt Cache (GPU memory)

NVIDIA A40

NVIDIA A100

NVIDIA RTX 4090

Figure 3. GPU latency measurements: TTFT for eight LongBench
datasets across three NVIDIA GPUs.

library currently does not offer these features, they can be
integrated with minor modifications. For instance, approxi-
mately 20 lines of additional code are needed for each LLM.
We outline the required adjustments:

Embedding Tables Early models like BERT (Vaswani
et al., 2023) and GPT-2 (Radford et al., 2018) use lookup
tables for mapping position IDs to learned embeddings or
fixed bias, requiring no alterations.

RoPE LLMs such as Llama2 (Touvron et al., 2023) and
Falcon (Penedo et al., 2023) adopt RoPE (Su et al., 2021),
which employs rotation matrices for positional encoding in
attention computations. We create a lookup table for each
rotation matrix, enabling retrieval based on position IDs.

ALiBi Utilized in models like MPT (MosaicML, 2023)
and Bloom (Scao et al., 2022), ALiBi (Press et al., 2022)
integrates a static bias during softmax score calculations.
Analogous to RoPE, we design a lookup table to adjust the
bias matrix according to the provided position IDs.

5 EVALUATION

Our evaluation of Prompt Cache focuses on answering the
following three research questions. (i) First, we benchmark
the impact of Prompt Cache on time-to-first-token (TTFT)
latency (§5.2,§5.4) and output quality (§5.3) on extensive
LLM datasets. (ii) Then we analyze the memory storage
overhead of Prompt Cache (§5.5) on a per-token basis. (iii)

Intel i9-13900K

AMD Ryzen 9 7950X

Baseline Prompt Cache (CPU memory)

Figure 4. CPU latency measurements: TTFT for eight LongBench
datasets across two CPUs.

Finally, we demonstrate a set of LLM applications where
Prompt Cache can have a significant effect (§5.6).

We use the LLM inference with KV Cache (Pope et al.,
2022) as our baseline. Prompt Cache and KV Cache share
the exact same inference pipeline except for attention state
computation. We use TTFT latency for comparison, which
measures the time to generate the first token, as Prompt
Cache and KV Cache have the same decoding latency after
the first token.

5.1 Evaluation Environment

We evaluate Prompt Cache on two CPU configurations: an
Intel i9-13900K accompanied by 128 GB DDR5 RAM at
5600 MT/s and an AMD Ryzen 9 7950X paired with 128
GB DDR4 RAM at 3600 MT/s. For our GPU benchmarks,
we deploy three NVIDIA GPUs: the RTX 4090, which is
paired with the Intel i9-13900K, and the A40 and A100,
both virtual nodes hosted on NCSA Delta, each provisioned
with a 16-core AMD EPIC 7763 and 224 GB RAM.

We employ several open-source LLMs, including Llama2,
CodeLlama, MPT, and Falcon. We use LLMs that fit within
the memory capacity of a single GPU (40 GB).

We utilize the LongBench suite (Bai et al., 2023) to assess
TTFT improvements and output quality changes. Long-
Bench encompasses a curated subsample of elongated data,
ranging from 4K to 10K context length, excerpts from
21 datasets across 6 categories, including tasks like multi-
document question answering (Yang et al., 2018; Ho et al.,
2020; Trivedi et al., 2022; Kočiskỳ et al., 2018; Joshi et al.,
2017), summarization (Huang et al., 2021; Zhong et al.,
2021; Fabbri et al., 2019), and code completion (Guo et al.,
2023; Liu et al., 2023a). We defined the documents in the
LongBench datasets, such as wiki pages and news articles,
as prompt modules. We kept the task-specific directives as

7



Prompt Cache: Modular Attention Reuse for Low-Latency Inference

uncached user text.

5.2 Latency Improvements on Benchmark Datasets

We measured the TTFT latency on both GPU and CPU using
Llama 7B, as shown in Figure 3 and Figure 4. In our GPU
evaluation, we used two memory setups: storing prompt
modules in either CPU or GPU memory. For CPU experi-
ments, we used CPU memory. Due to space constraints, we
present only 8 benchmarks. The complete benchmark can
be found in the Appendix A.

5.2.1 GPU Inference Latency

We summarize our findings in Figure 3, evaluated on three
NVIDIA GPUs: RTX 4090, A40, and A100. Yellow bars
represent loading prompt modules from CPU memory, while
blue bars represent the case in GPU memory. There is a con-
sistent latency trend across the datasets since the LongBench
samples have comparable lengths, averaging 5K tokens.

We observe significant TTFT latency reductions across all
datasets and GPUs, ranging from 1.5× to 3× when using
CPU memory, and from 5× to 10× when employing GPU
memory. These results delineate the upper and lower bounds
of latency reductions possible with Prompt Cache. The
actual latency reduction in practice will fall between these
bounds, based on how much of each memory type is used.

5.2.2 CPU Inference Latency

Figure 4 shows that Prompt Cache achieves up to a 70×
and 20× latency reduction on the Intel and AMD CPUs,
respectively. We surmise that this disparity is influenced
by the difference in memory bandwidth in system setups
(5600MT/s DDR5 RAM on the Intel CPU versus 3600MT/s
DDR4 RAM on the AMD CPU). As expected, the latency is
higher for the datasets with a larger proportion of uncached
prompts, such as TriviaQA. Interestingly, CPU inference
benefits more significantly from Prompt Cache than GPU
inference does. This is attributed to the much greater la-
tency of attention computation in the CPU, especially as the
sequences become longer (e.g., lower FP16/FP32 FLOPs
compared to GPU).

5.3 Accuracy with Prompt Cache

To verify the impact of Prompt Cache on the quality of
LLM response, we measure accuracy scores with the Long-
Bench suite. To demonstrate general applicability, we apply
Prompt Cache to the three LLMs having different trans-
former architectures (§4.2): Llama2, MPT, and Falcon.

The accuracy benchmark results shown in Table 1 demon-
strate Prompt Cache preserves the precision of the output.
We use deterministic sampling where the token with the

Cache advantage
in CPU

Cache advantage
in A40

Cache advantage
in RTX 4090

Figure 5. Cache advantage: A comparison of computational and
caching overheads in GPUs and CPUs. While attention computa-
tion cost increases quadratically, the attention state memory copy
overhead (i.e., Prompt Cache) rises linearly. Here, GPUs load
prompt modules directly from CPU memory.

highest probability is chosen at every step so that the results
with and without Prompt Cache are comparable. Across
all datasets, the accuracy of output with Prompt Cache is
comparable to the baseline.

5.4 Understanding Latency Improvements

Theoretically, Prompt Cache should offer quadratic TTFT
latency reduction over regular KV Cache. This is because,
while Prompt Cache’s memcpy overhead grows linearly with
sequence length, computing self-attention has quadratic
computational complexity with respect to sequence length.
To validate this, we tested Prompt Cache on a synthetic
dataset with varied sequence lengths, assuming all prompts
were cached. We compared the TTFT latency of Prompt
Cache to that of regular KV Cache using an Intel i9-13900K
CPU and two GPUs (NVIDIA RTX 4090 and A40) with the
Llama2 7B model. For both CPU and GPU, CPU memory
is used for prompt module storage.

Quadratic improvement: Our findings, presented in Fig-
ure 5, show that KV Cache’s latency increases quadratically
with sequence length, while Prompt Cache’s memory copy
cost grows linearly. This means that the latency advantage
of Prompt Cache (the gap between the two curves) expands
quadratically with sequence length. This difference is more
pronounced on CPUs than GPUs since CPUs experience
higher attention computation latencies, whereas the dispar-
ity between Prompt Cache’s overhead, i.e., host-to-device
memcpy in GPUs and host-to-host memcpy in CPUs is not
significant. With attention states with 5K tokens, latency for
host-to-host, host-to-device, and device-to-device memcpy
are respectively 3.79 ms, 5.34 ms, and 0.23 ms.

Effect of model size: Furthermore, as the model’s parameter
size grows, so does the computational overhead for KV
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Dataset Metric Llama2 7B Llama2 13B MPT 7B Falcon 7B

Baseline Cached Baseline Cached Baseline Cached Baseline Cached

Narrative QA F1 19.93 19.38 20.37 19.94 10.43 11.33 7.14 8.87
2 Wiki Multi-Hop QA F1 16.63 13.95 14.59 17.69 10.44 13.70 14.42 15.07

MuSiQue F1 7.31 8.57 10.03 12.14 7.38 7.32 4.81 5.86
GovReport Rouge L 24.67 25.37 28.13 28.18 26.96 27.49 22.39 23.40
QMSum Rouge L 19.24 19.46 18.80 18.82 15.19 15.51 12.84 12.96

MultiNews Rouge L 24.33 24.22 25.43 26.23 25.42 25.66 20.91 21.19
TriviaQA F1 13.04 12.33 23.19 22.38 10.57 9.17 13.31 11.42

Passage Retrieval Acc 7.50 4.25 9.08 6.50 3.03 3.85 3.00 3.45

Table 1. Accuracy benchmarks on LongBench datasets. We mark the outliers as bold, of which the performance is higher than 2.5
compared to the counter part.

LLM BERT Falcon 1B Llama 7B Llama 13B

MB/token 0.03 0.18 0.50 0.78

LLM MPT 30B Falcon 40B Llama 70B Falcon 180B

MB/token 1.31 1.87 2.5 4.53

Table 2. Memory overhead of caching a single token

Cache. For example, moving from a 7B to 13B model at a
token length of 3K added 220 ms latency, whereas Prompt
Cache added only 30 ms. This difference stems from the
fact that LLM complexity also scales quadratically with
hidden dimension size.

End-to-end latency: Since Prompt Cache reduces only
TTFT, its impact on the time needed to receive the complete
LLM response diminishes as the number of generated to-
kens increases. For instance, on the RTX 4090 with Llama
7B for 3K context, Prompt Cache enhances TTFT from 900
ms to 90 ms, while the token generation time or the time-to-
subsequent-token (TTST) remains consistent between KV
Cache and Prompt Cache at an average of 32 ms per token,
regardless of the token length. Nonetheless, a quicker re-
sponse time contributes positively to the user experience and
the overall end-to-end latency (Lew et al., 2018; Liu et al.,
2023b), For instance, Given that Prompt Cache enhances
TTFT from 900 ms to 90 ms, this equates to the generation
of 25 more tokens within the same timeframe.

5.5 Memory Overhead

The memory overhead associated with Prompt Cache is
proportional to the aggregated number of tokens cached.
This overhead can be determined by referencing both the
prompt schema and the target LLM. In Table 2, we eluci-
date the memory overhead on a per-token basis, under the
assumption of utilizing a 16-bit precision for floating points.

For compact models, such as Falcon 1B, caching a docu-
ment containing 1K tokens would require approximately
180 MB of memory. If there are hundreds of prompt mod-

ules, the combined memory consumption would range in the
tens of gigabytes—a quantity within the memory confines
of server-grade GPUs. Conversely, for larger models like
Llama 70B, caching a 1K length module would command a
substantial 2.5 GB of memory per document, which leaves
CPU memory as the only option for prompt module stor-
age. Given these considerations, compression techniques
for attention states (Zhang et al., 2023) remain an avenue
for future research in this domain.

5.6 Applications of Prompt Cache

We demonstrate the expressiveness of PML with example
use cases that require more complicated prompt structures
and advanced features (§3.2) than the LongBench suite: (i)
multiple modules in a query, (ii) union, and (iii) parame-
terization. Furthermore, these tasks underscore the notable
latency reduction as the number of cached tokens increases
in such complicated use cases. Across use cases, we provide
a qualitative assessment of the output by juxtaposing cached
and non-cached generation, showcasing that Prompt Cache
maintains output quality, along with the latency reductions
achieved by Prompt Cache. We use Llama2 7B and store
prompt modules in the local memory (i.e., GPU memory for
GPU inference). The full schema for these tasks is available
in Appendix B.

5.6.1 Code Generation

LLMs are commonly used for code generation (Guo et al.,
2023; Liu et al., 2023a), aiding programmers in either as-
sisting with or directly generating code. Currently available
methods, such as Copilot (GitHub, 2023), typically focus on
individual source files. Prompt Cache, however, can extend
this to multiple files leveraging a modular nature of source
code. For instance, each class or function could be a distinct
prompt module.

Figure 6 illustrates multi-source code generation using
CodeLlama 7B (Rozière et al., 2023). We treat classes
like Unit, Map, and Player as prompt modules in our
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<unit.py/>
<map.py/>
<player.py/>
<game.py/>
<database.py/>

<user>
Create a main entry point for 
the game, using Map, Player, 
and Game classes.
</user>

    map = Map(grid_size=100)
    player1 = Player(player_id=1, name='Player 1')
    player2 = Player(player_id=2, name='Player 2')
    game = Game(players=[player1, player2], map=map)
    game.start_game()

    map = Map(grid_size=100)
    player1 = Player(player_id=1, name='Player 1')
    player2 = Player(player_id=2, name='Player 2')
    game = Game(map=map, players=[player1, player2])
    game.start_game()

Baseline

Prompt Caching

User prompt (GPU: 924ms, CPU: 75,976ms)

(GPU: 93ms, CPU: 861ms)

Figure 6. Code generation using Prompt Cache: Each source file
becomes a prompt module, allowing users to “import” files as
context with minimal overhead.

<middle-school/>
<beginner/>
<studied-a-year-before/>
<auditory/>
<essay/>
<high-intrinsic-motivation/>

<user>
Concisely describe the learn-
er’s profile.
</user>

The learner is a middle school student transi-
tioning from elementary school, … They are at the 
beginning stage of learning new subjects … learn-
ing style, with a preference for auditory learn-
ing … They are motivated by intrinsic factors, … 

The learner is a middle school student transi-
tioning from elementary school, … They are at the 
beginning stage of their learning journey … The 
learner's preferred learning style is auditory, … 
they have a high intrinsic motivation for … 

Baseline

Prompt Caching

User prompt (GPU: 216ms, CPU: 22,449ms)

(GPU: 65ms, CPU: 686ms)

Figure 7. Personalization example: Six categories each have five
traits. Traits in the same category are grouped in <union>.

schema for game programming. Users can then integrate
these classes similarly to code imports. There is a 4× im-
provement in TTFT latency on GPUs while the output is
almost identical.

5.6.2 Personalization

Figure 7 shows the latency benefits and the output quality of
Prompt Cache in a personalization use case. Personalization
is integral to many recommender systems (Wu et al., 2023),
finding prominent applications in LLM contexts such as ed-
ucation, content recommendations, and targeted marketing.
We highlight the efficacy of feature-based personalization
through Prompt Cache. Here, personalization hinges on
a defined set of features. Each feature is represented as a
distinct prompt module, with relationships between features
denoted using union tags such as grade level, proficiency,
learning history, learning style, and assessment type.

5.6.3 Parameterized Prompts

In Figure 8, we show a trip planning use case leveraging
parameterization (§3.2). The schema used in this use case
encompasses one adjustable parameter to specify the trip
duration along with two union modules to select the desti-
nation. Users can reuse the templated prompt with custom
parameters, enjoying lower TTFT latency and the same
quality of LLM response enabled by Prompt Cache.

<travel-plan for="a week">
  <overseas>
    <tokyo/>
  </overseas>
</travel-plan>

<user>
Create a travel plan
</user>

Great! Based on your preferences, I have created 
a 7-day travel plan for you to explore the vi-
brant city of Tokyo, Japan … Day 1: Arrival and 
Exploration of Tokyo * Arrive at Narita or Haneda 
Airport and transfer to your hotel … * Visit the 
famous Shibuya Crossing  …

Great, I'd be happy to help you plan your trip to 
Tokyo, Japan! Here's a 7-day itinerary that in-
cludes … Day 1: Arrival and Exploring Tokyo * 
Arrive at Narita or Haneda Airport and take a 
train or bus to your hotel * Visit the famous 
Shibuya Crossing, …

Baseline

Prompt Caching

User prompt (GPU: 75ms, CPU: 4,725ms)

(GPU: 54ms, CPU: 479ms)

Figure 8. Parameterized prompts: The <travel-plan> is re-
configured at runtime while maintaining caching efficiency, offer-
ing flexible prompt structuring.

6 CONCLUSIONS AND FUTURE WORK

We introduce Prompt Cache, an acceleration technique
based on the insight that attention states can be reused across
LLM prompts. Prompt Cache utilizes a prompt schema to
delineate such reused text segments, formulating them into a
modular and positionally coherent structure termed “prompt
modules”. This allows LLM users to incorporate these
modules seamlessly into their prompts, thereby leveraging
them for context with negligible latency implications. Our
evaluations on benchmark data sets indicate TTFT latency
reductions of up to 8× on GPUs and 60× on CPUs.

For future work, we plan on using Prompt Cache as a build-
ing block for future LLM serving systems. Such a system
could be equipped with GPU cache replacement strategies
optimized to achieve the latency lower bound made possible
by Prompt Cache. Different strategies for reducing host-
to-device memory overhead can also be beneficial, such as
the integration of compression techniques in the KV cache.
Another promising exploration is cache-driven retrieval aug-
mentation. In this paradigm, the selection of prompt mod-
ules can be dynamically adapted based on user requests.
This offers similar advantages to the retrieval-augmented
LLMs but with lower latency.
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A APPENDIX

A.1 Schema Files Used for Evaluation in Section 5.3

In this appendix, we provide the pruned schema files that
were employed during our evaluations as described in Sec-
tion 5.3.

A.1.1 Code Schema

<schema name="code-generation-game">
<system>

You are a sophisticated ...
</system>
<user>

Please read the given source files...
<module name="unit.py">

class Unit:
...

</module>
<module name="player.py">

class Player:
...

</module>
<module name="game.py">

class Game:
...

</module>
<module name="database.py">

class Database:...
</module>

</user>
<assistant>

I have read and ...
</assistant>

</schema>

A.1.2 Travel Schema

<schema name="travel">
<system>

You are a world-renowned travel
planner ...

</system>
<user>

<module name="travel-plan"> I’m
gearing up for a memorable escape
...

<parameter name="duration" length="5
" />

...
<union>
<module name=’domestic’> My eyes

are set ...
<parameter name="city" length="

10" />
Given its domestic charm ...

</module>
<module name="overseas"> I’m

yearning to tread ...
<union>

<module name="maldives">
The Maldives beckons ...

</module>

<module name="amazon">
The vast expanse of the

Amazon...
</module>
<module name="sahara">

The golden embrace of ...
</module>
<module name="tokyo">

Tokyo, Japan’s bustling,...
</module>
<module name="rome">

The eternal city of Rome...
</module>
<module name="capetown">

Cape Town, nestled at...
</module>
<module name="sydney">

Sydney, the shimmering ...
</module>
<module name="buenosaires">

Buenos Aires, Argentina..
</module>

</union>
</module>

</union>
</module>

</user>
<assistant>
I’d love to help. I’ve carefully read

the city ...
</assistant>

</schema>

A.1.3 Personalization Schema

<schema name="personalization-education">
<system>Dialogues between people...
</system>
<user> **Tailor learning content ...
<union>

<module name="elementary">
The elementary phase ..

</module>
<module name="middle-school">

As students transition...
</module>
<module name="high-school">

High school acts...
</module>
<module name="college">

College is a transformative ...
</module>
<module name="graduate-school">

Graduate school signifies ...
</module>
<module name="adult-education">

In an ever-evolving world,...
</module>

</union>
2. Subject proficiency ...
<union>

<module name="beginner">
A beginner is often at ...

</module>
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<module name="intermediate">
An intermediate learner...

</module>
<module name="advanced">
An advanced learner...

</module>
<module name="expert">
An expert stands at...

</module>
</union>
3. Recent learning history
<union>

<module name="recently-studied">
If a topic was engaged...

</module>
<module name="studied-a-month-before

">
Topics encountered a ...

</module>
<module name="studied-6-months-

before">
Half a year is ample ...

</module>
<module name="studied-a-year-before"

>
As the year mark ...

</module>
<module name="studied-10-years-

before">
A decade is a substantial...

</module>
<module name="never-studied">
Venturing into entirely ...

</module>
</union>
4. Learning style...
<union>
<module name="visual">
Visual learners ...

</module>
<module name="auditory">
For auditory learners...

</module>
<module name="kinesthetic">
Kinesthetic learners ...

</module>
<module name="reading">
Those who identify ...

</module>
<module name="multimodal">
Multimodal learners ...

</module>
</union>
5. Preferred assessment type
<union>
<module name="multiple-choice">
Multiple choice assessments ...

</module>
<module name="essay">
Essay assessments...

</module>
<module name="oral-presentation">
This assessment type ...

</module>
<module name="group-projects">

A testament to collaborative...
</module>
<module name="self-assessment">

Taking a step back ...
</module>

</union>
6. Motivation level Motivation...
<union>

<module name="high-intrinsic-
motivation">

Learners with a high intrinsic
motivation ...

</module>
<module name="high-extrinsic-

motivation">
While some are driven by ...

</module>
<module name="needs-encouragement">

Some learners, while capable,...
</module>
<module name="lacks-direction">

This category encompasses...
</module>

</union>
Ready to tailor the content? </user>

<assistant>
Content tailored ...

</assistant>
</schema>

A.2 Complete Benchmarks Results

In this subsection, we provide complete results of the bench-
mark that we conducted in §5—the following four datasets
are added: Qasper, MFQA, HotpotQA, and PCount (to-
tal 12 datasets). We employ LongBench suite to measure
time-to-first-token (TTFT) latency and accuracy. For the
complete system environment setup, see §5.1.

Latency benefits on GPU Figure 9 to Figure 11 show
that the TTFT latency reduction across all dataset follows
the same trend reported in §5. The latency reduction ranges
from 1.5× to 3.1× when prompt modules are stored in CPU
memory, and from 3.7× to 11.7× when employing GPU
memory.

Latency benefits on CPU The latency reduction on CPU
also follow the same trend as §5.2, as shown in Figure 12 and
Figure 13. The latency improvement ranges from 9.3× to
63.7× across CPU configurations and dataset. As discussed
in §5.4, the latency reduction decreases as the non-cacheable
portion of prompt and response increases.

Quality of responses We measure accuracy in dataset-
specific metric as shown in Table 3. Across datasets and
metrics, Prompt Cache maintains negligible performance
degradation compared to the baseline, KV Cache.
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Figure 9. Latency benchmark results on Nvidia RTX 4090 GPU.

Figure 10. Latency benchmark results on Nvidia A100 GPU.

Figure 11. Latency benchmark results on Nvidia A40 GPU.

Figure 12. Latency benchmark results on Intel i9-13900K CPU with 5600MT/s DDR5 RAM.
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Figure 13. Latency benchmark results on AMD Ryzen 9 7950X CPU with 3600 MT/s DDR4 RAM.

Dataset Metric Llama2 7B Llama2 13B MPT 7B Falcon 7B

Baseline Cached Baseline Cached Baseline Cached Baseline Cached

Narrative QA F1 19.93 19.38 20.37 19.94 10.43 11.33 7.14 8.87
Qasper F1 17.98 19.31 20.90 17.79 10.08 13.71 10.64 8.90

Multi-field QA (MFQA) F1 28.61 29.64 32.12 32.37 25.15 27.45 17.49 16.65
HotpotQA F1 18.32 19.34 22.21 23.35 18.97 20.11 12.37 13.22

2 Wiki Multi-Hop QA F1 16.63 13.95 14.59 17.69 10.44 13.70 14.42 15.07
MuSiQue F1 7.31 8.57 10.03 12.14 7.38 7.32 4.81 5.86

GovReport Rouge L 24.67 25.37 28.13 28.18 26.96 27.49 22.39 23.40
QMSum Rouge L 19.24 19.46 18.80 18.82 15.19 15.51 12.84 12.96

MultiNews Rouge L 24.33 24.22 25.43 26.23 25.42 25.66 20.91 21.19
TriviaQA F1 13.04 12.33 23.19 22.38 10.57 9.17 13.31 11.42

Passage Count (PCount) Acc 3.33 4.00 2.26 2.95 1.53 1.81 1.55 1.59
Passage Retrieval Acc 7.50 4.25 9.08 6.50 3.03 3.85 3.00 3.45

Table 3. Accuracy benchmarks on LongBench datasets. We mark the outliers as bold, of which the performance is higher than 2.5
compared to the counter part.
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