
SCALO: An Accelerator-Rich Distributed System for
Scalable Brain-Computer Interfacing

Karthik Sriram∗

karthik.sriram@yale.edu
Yale University

Raghavendra Pradyumna
Pothukuchi∗

raghav.pothukuchi@yale.edu
Yale University

Michał Gerasimiuk
michal.gerasimiuk@yale.edu

Yale University

Muhammed Ugur
muhammed.ugur@yale.edu

Yale University

Oliver Ye
oliver.ye@yale.edu
Yale University

Rajit Manohar
rajit.manohar@yale.edu

Yale University

Anurag Khandelwal
anurag.khandelwal@yale.edu

Yale University

Abhishek Bhattacharjee
abhishek@cs.yale.edu

Yale University

ABSTRACT
SCALO is the first distributed brain-computer interface (BCI) con-
sisting of multiple wireless-networked implants placed on different
brain regions. SCALO unlocks new treatment options for debil-
itating neurological disorders and new research into brain-wide
network behavior. Achieving the fast and low-power communica-
tion necessary for real-time processing has historically restricted
BCIs to single brain sites. SCALO also adheres to tight power con-
straints, but enables fast distributed processing. Central to SCALO’s
efficiency is its realization as a full stack distributed system of brain
implants with accelerator-rich compute. SCALO balances modu-
lar system layering with aggressive cross-layer hardware-software
co-design to integrate compute, networking, and storage. The re-
sult is a lesson in designing energy-efficient networked distributed
systems with hardware accelerators from the ground up.

CCS CONCEPTS
• Hardware→ Neural systems; • Computer systems organi-
zation → Heterogeneous (hybrid) systems; Real-time system
architecture; • Computing methodologies → Distributed com-
puting methodologies.
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1 INTRODUCTION
Brain-computer interfaces (BCIs) connect biological neurons in
the brain with computers and machines. BCIs are advancing our
understanding of the brain [6, 45, 67], helping treat neurologi-
cal/neuropsychiatric disorders, and helping restore lost sensori-
motor function [22, 47, 59, 67, 75, 119, 154]. BCIs are also enabling
novel human-machine interactions [136] with new applications in
industrial robotics [172] and personal entertainment [85].

BCIs sense and/or stimulate the brain’s neural activity using
either wearable surface electrodes, or through surgically implanted
surface and depth electrodes [67]. BCIs have historically simply
relayed the neural activity picked up by electrode sensors to comput-
ers that process or “decode" that neural activity [22, 67]. But, emerg-
ing neural applications increasingly benefit from BCIs that also
include processing capabilities. Such BCIs enable continuous and
autonomous operation without tethering [6, 22, 23, 67, 123, 154].

In this work, we focus on the design of processors for surgically
implanted BCIs that are at the cutting edge of neural engineer-
ing. Although they pose surgical risks, implanted BCIs collect far
higher fidelity neural signals than wearable BCIs [9, 100]. Con-
sequently, implantable BCIs are used in state-of-the-art research
applications [22, 67, 154] and have been clinically approved to treat
epilepsy and Parkinson’s disease [77, 132, 143, 150], show promise
(via clinical trials) in restoring movement to paralyzed individu-
als, offer a path to partially restoring vision to visually-impaired
individuals, and more [42, 108, 142, 150].

Implantable BCI processors are challenging to design. They are
limited to only a few milliwatts of power as overheating the brain
by just >1 ◦C risks damaging cellular tissue [114, 160]. At the same
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time, implantable BCIs are expected to process exponentially grow-
ing volumes of neuronal data [130] within milliseconds [162, 174].
Most modern BCIs [7, 24, 56, 77, 95, 132] achieve low power by spe-
cializing to a single task [7, 24] and by sacrificing neural processing
data rates [56, 77, 95, 132]. Neither option is ideal. BCIs should
instead be flexible, so that algorithms on board can be personal-
ized to individuals and so that many new and existing algorithms
can be supported [44, 52, 103, 158, 171]. And, BCIs should process
higher data rates to infer more about the brain. To achieve these
goals, we recently proposed HALO, an accelerator-rich processor
that achieves low power at neural data rates orders of magnitude
higher than prior work (46Mbps), but also achieves flexibility via
programmable inter-accelerator dataflow [52, 53, 129].

While HALO successfully balances power, data rate, and flex-
ibility, it interfaces with only a single brain site, whereas future
BCIs will consist of distributed implants that interface with multi-
ple brain sites. Applications that process neural data from multiple
brain sites over multiple timescales are becoming common as neuro-
science research is increasingly showing that the brain’s functions
(and disorders) are based on temporally-varying physical and func-
tional connectivity among brain regions [6, 10, 134]. Assessing
brain connectivity requires placing communicating implants in
different brain regions, with storage that enables multi-timescale
analysis. Unfortunately, no existing BCIs integrate adequate storage
for such long-scale analysis. Even worse, communication is prob-
lematic. Because wired networks impose surgical risk and potential
infection [151], wireless networking is desirable. Unfortunately,
however, wireless networking offers lower data rates (10× lower
than compute) under milliwatts of power.

We address these challenges by proposing and building SCALO,
the first BCI architecture for multi-site brain interfacing in real time.
SCALO is a distributed system of wirelessly networked implants.
Each implant has a HALO processor augmented with storage and
compute to support distributed BCI applications. SCALO includes
an integer linear programming (ILP)-based scheduler that optimally
maps applications to the accelerators and creates network/storage
schedules to feed our hardware accelerators. SCALO has a pro-
gramming interface that is easily plugged into widely-used signal
processing frameworks like TrillDSP [90], XStream [36], and MAT-
LAB [74]. SCALO continues to support HALO’s single-implant
applications [52], but also enables, for the first time, three new
classes of distributed applications [87, 174].

The first class consists of internal closed-loop applications that
modulate brain activity [174] without communicating with systems
external to the BCI. These applications monitor multiple brain
sites, and when necessary, respond autonomously with electrical
stimulation. Examples include detection and treatment of epileptic
seizure spread, essential tremor, and Parkinson’s disease [10, 44].

The second class consists of external closed-loop applications
where BCIs communicate with systems external to the brain and
BCI [87, 174]. Examples include neural prostheses for speech and
brain-controlled screen control devices [50, 99, 159, 162, 173].

The third class consists of interactive human-in-the-loop appli-
cations where clinicians query the BCI for data or dynamically
adjust processing/stimulation parameters [65, 125]. This is useful
to validate BCI detection of seizures [65], personalize stimulation
algorithms to individuals [158], or debug BCI operation.

SCALO achieves ultra power-efficient operation by tightly co-
designing compute with storage, networking, scheduling, and ap-
plication layers. We use knowledge of neural decoding methods
to reduce communication between implants comprising the dis-
tributed BCI by: (1) building locality-sensitive hash measures to
filter candidates for expensive signal similarity analysis across im-
plants; (2) reducing data dimensionality by hierarchically splitting
computations in classifiers and neural networks; and, unusually,
(3) by centralizing rather than distributing key computations when
appropriate (e.g., like matrix inversion in our applications).

SCALO consists of hardware accelerators or processing elements
(PEs) to support (1)-(3) above with low latency and power. We
build the PEs so that they can be reconfigured to realize many
applications, and compose them in a GALS (Globally Asynchronous
Locally Synchronous) architecture [52]. By realizing each PE in its
independent clock domain, we allow it to be tuned for the minimal
power to sustain a given application-level processing rate. We use
per-implant non-volatile memory (NVM) to store prior signals and
hash data. Our storage layout is optimized for PE access patterns.

SCALO also consists of per-implant radios that support an ultra-
wideband (UWB) wireless network. We build our PEs to directly
access the network and storage, avoiding the bottlenecks that tradi-
tional accelerator-based systems (including ultra-low-power coarse-
grained reconfigurable arrays or CGRAs [37, 38, 91, 133, 139, 152])
suffer in relying on CPUs to orchestrate data movement.

SCALO’s components are predictable in latency and power, fa-
cilitating optimal compute/network scheduling with an ILP. For
PEs whose output data generation rates are based on input patterns
(e.g., data compression), our ILP uses worst-case bounds.

We evaluate SCALO with a physical synthesis flow in a 28 nm
CMOS process coupled with network and storage models. Our eval-
uations are supported by prior partial chip tape-outs of HALO in a
12 nm CMOS process. SCALO achieves an aggregate neural inter-
facing data rate of 506Mbps using 11 implants to assess and arrest
seizure propagation within 10ms of seizure onset; 188Mbps using
4 implants to relay intended movements to external prostheses
within 50ms and restore sensorimotor function; and sorts 12,250
spikes per second per site with a latency of 2.5ms. All applications
expend less than 15mW per implant. When used for interactive
querying, SCALO supports 9 queries per second over 7MB of data
over 11 implants. Overall, our contributions include:
(1) A full-stack accelerator-rich distributed BCI, with unusually

tight integration of compute with network and storage.
(2) The design of an optimal ILP-scheduler for mapping applica-

tions across distributed accelerators and network, enabled by a
deterministic compute, network and storage design.

(3) An interface facilitating easy integration into existing data and
signal processing platforms.
These technical contributions, in turn, translate into advances

in neural decoding and computer systems design:
(1) Neural Decoding: The first distributed wireless BCI processing

architecture for decoding, analysis, and electrical stimulation of
brain-wide networks. SCALO offers the first on-device support
for seizure propagation and movement intent analysis on multi-
ple brain sites. SCALO includes configurable on-device locality
sensitive hashing for fast signal similarity analysis.
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(2) Computer Systems: An experiment in the design of an end-to-
end distributed system of accelerators from the application layer
to physical synthesis. Our evaluation shows 10–385× higher
processing rates over prior work at 15mW per implant.

2 BACKGROUND
2.1 Components of a BCI
BCI applications consist of signal measurement, feature extrac-
tion, classification/decision-making, and when applicable, neural
feedback/stimulation [22, 67, 119]. BCIs consist of hardware com-
ponents mirroring each of these four stages.

Signal measurement is performed by electrodes that read the elec-
trical activity of neurons and analog-to-digital converters (ADCs)
that digitize these signals. Arrays of 96–256 [14] electrodes or depth
probes of 1–4 electrodes [13] are widely used. BCI ADCs typically
sample at 5–50 KHz per electrode with 8–16 bit resolution [33, 159].

Feature extraction and classification/decision-making are per-
formed on the digitized data. These portions of the neural pipeline
were historically undertaken by external servers, but on-BCI com-
putation is becoming increasingly important [6, 23, 25, 67, 123, 154].
When neural feedback is needed, the electrodes are repurposed (af-
ter digital-to-analog conversion) to electrically stimulate the brain.
Electrical stimulation can, for example, mitigate seizure symptoms.

Traditional BCI communication with external server/prostheses
relied on wires routed through a port embedded in the skull [17,
151, 156]. But, wiring restricts the individual’s movement, hinders
convenience, and is susceptible to infections and cerebrospinal fluid
leaks [151]. Wireless radios avoid these issues and are consequently
being used more widely [6, 60, 123, 151, 165].

Some BCIs use batteries that are implanted and single-use [132]
or externally removable [17]. Recent BCIs are using implanted
rechargeable batteries with inductive power transfer [5, 43, 46].

Taken together, all these components are packaged in hermetically-
fused silica or titanium capsules. While safe power limits depend
on implantation location and depth [121, 122], we use 15mW per
implant as a conservative limit [39, 43, 52, 57, 121, 127, 146].

2.2 BCI Applications & Kernels
The space of BCI applications is rapidly growing [6, 67, 154]. Some
require neural data from only a single brain region (e.g., spike
sorting [16]) while many others (e.g., epileptic seizure propagation
and movement intent decoding) require neural data from multiple
brain regions [6, 10, 134]. We target three classes of distributed
BCI applications that operate in autonomous closed loops [87, 174].
From each class, we study a representative application. Additionally,
we also study spike sorting, a kernel that is often used to pre-
preprocess neural data before subsequent application pipelines [16].

Internal closed-loop applications: Nearly 25 million individ-
uals worldwide suffer from drug-resistant epilepsy and experi-
ence seizures that last tens of minutes to hours [29, 141, 163] per
day. BCI-led closed-loop therapy can help these individuals im-
mensely [47, 56]. SCALO supports epileptic seizure propagation
calculations on device, which many recent studies show as being
desirable [10, 15, 61, 103, 126]. Seizure propagation applications cor-
relate neural signals from brain regions where seizures originate to

current and historical signals from other brain sites [10, 51]. Corre-
lations help identify the network dysfunction that underlies seizure
spread, which in turn unlocks targeted treatment options [10, 64].

Figure 1a illustrates seizure propagation analysis [10, 51]. First,
seizures are detected “locally" in each brain site. This is done with
band-pass filtering and/or the fast Fourier transform (FFT), which
generate features from contiguous timewindows of neural data, and
then using classifiers like support vector machines (SVMs) [118].

When a seizure is detected at a brain site, its neural data is cor-
related with recent and past neural signals from other brain sites.
Many measures are used to determine correlation, including dy-
namic time warping (DTW), Euclidean distance, cross-correlation,
and Earth Mover’s Distance (EMD) [10, 69, 82]. Once correlated
brain regions are identified and seizure spread is forecast, brain
regions anticipating seizure spread are electrically stimulated to
mitigate the spread.

Treatment effectiveness depends on accurate but also timely
seizure forecasting [62, 98]. In consultation with the clinicians and
researchers that we collaborate with at the Yale School of Medicine,
we set a challenging 10ms target from local seizure detection to
seizure forecasting and electrical stimulation.

(a) Seizure propagation analysis.

(b) Decoding movement intent with three different ap-
proaches.

(c) Spike sorting to separate the combined electrode activity.

Figure 1: Overview of BCI applications supported by SCALO.

External closed-loop applications: These applications help in-
dividuals control assistive devices external to BCIs like artificial
limbs [4, 20, 94, 124, 153, 167], cursors on computer screens [35, 92,
93, 157], or prostheses that translate brain signals corresponding
to intended speech into text on computer screens [50, 99, 159, 162].
We select three neural processing algorithms representative of this
category of applications and illustrate them in Figure 1b.

Pipeline A○ classifies neural activity into one of a preset number
of limb movements like finger pointing, arm stretch, and more [94,
124]. The features are extracted using FFT and filters, and used by
a classifier to identify movement. Linear SVMs are most commonly
used for classification [34, 59, 70, 86, 116]. More complex deep
neural networks (DNNs) have been shown to outperform SVMs
and are promising [124]. For now, SCALO supports linear SVMs and
shallow networks as they require less training data thanDNNs, have
more intuitive parameter tuning, and are more interpretable [34,
59, 70]. We will study SCALO support for DNNs in future work.

Unlike pipeline A○ (which identifies complex movements as a
whole), pipelines B○ and C○ decode the position and velocity of
arm/finger movements or cursor movements on screen [159, 162].
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Pipelines B○ and C○ calculate spike band power in neural signals by
taking the mean value of all neural signals in a time window (typi-
cally 50ms). Pipelines may use a variant of Kalman Filter ( B○) [162]
or a shallow neural network ( C○) [159] to decode movement intent.

Decoded intended movement is relayed to computer screens, ar-
tificial limbs, or even paralyzed limbs implanted with electrodes [4].
When the individual has also lost sensory function, the “feeling"
of movement is emulated by relaying the impact of the movement
back to the individual’s BCI. The BCI then electrically stimulates rel-
evant brain sites to emulate sensory function [4, 11, 23, 30, 67, 135,
145]. The entire movement decoding loop must complete within
50ms [159] to effectively restore sensorimotor control.

Human-in-the-loop applications:Researchers, or clinicianswish
to interactively query BCI devices. They may retrieve important
neural data, configure device parameters for personalization, or
verify correct operation. Low query latency is not just desirable,
but often necessary. For example, a clinician may need to retrieve
neural data and manually confirm that the BCI correctly detected a
seizure. Or, a clinician may plan to test the effectiveness of a new
electrical stimulation protocol for treatment. Faster device query-
ing measurably improves BCI utility in such cases [65, 125]. It is
important, however, that interactive querying does not disrupt the
other BCI applications that are continuously running.

Spike sorting kernel: Each electrode usually measures the com-
bined electrical activity of a cluster of spatially-adjacent neurons.
This combined activity is also influenced by sensor time lag, signal
attenuation, and sensor drift [16]. The goal of spike sorting is to sep-
arate combined neural activity into per-neuron waveforms. Unlike
the applications discussed thus far, spike sorting is entirely local to
each brain site. But, it is a widely used first step for important BCI
applications that rely on neuron-level analysis [16, 78, 89, 106, 109].
In fact, spike sorting would also benefit other applications like
movement intent decoding if it could be made faster (today, the
prohibitive cost of spoke sorting prompts usage of approximated
sorting [26, 138, 140]). SCALO offers power-efficient spike-sorting
within a few milliseconds to fully unlock its potential.

Figure 1c shows a typical spike sorting pipeline. Spike waveforms
are detected from electrode signals. They are then matched with
templates corresponding to each neuron. Such templates may be
obtained offline from prior recordings or generated online with
clustering [111]. Spikewaveforms arematchedwith templates using
some of the same compute-intensive correlation measures from
seizure propagation pipelines; e.g., DTW and EMD [19, 41, 128].

2.3 BCI Design Challenges
BCIs cannot exceed 15mW and have tight response times (10ms for
seizure propagation, 50ms for movement decoding, a few 100ms
for interactive querying, and a few milliseconds for spike sorting).
Distributed processing is challenging because inter-implant com-
munication radios have low data rates, and do not use multiple
frequencies (to save power), requiring serial network access [107].

Overspecializing hardware to achieve low power is undesirable.
Neural signaling differs across brain regions and across subjects [44,
158]. Signaling even evolves over time, and as a consequence of the
brain’s response to the implant [44, 131, 158]. No single processing
algorithm and parameters is optimal for the application pipelines

in Section 2.2. Instead, these pipelines must be customized to the
implant site, the individual, and must be regularly re-calibrated.

Distributed BCIs heighten this tension in power and flexibility.
The few distributed multi-site BCIs that have been built to date [3,
68, 134] use multiple sensor implants that offload processing to
external computers [3, 68], but do not support on-BCI processing.
This restricts their scope and timeliness [173].

SCALO is the first distributed multi-site BCI to offer on-BCI
processing. One may initially expect thermal coupling between the
implants in SCALO to restrict per-implant power budgets below
the 15mW target of single-site BCIs like HALO. As we detail in
Section 5, however, the brain’s cerebrospinal fluid and blood flow
dissipate heat effectively on the cortex, making thermal coupling
negligible even with relatively short inter-implant spacing.

2.4 Locality-Sensitive Hashing
While inter-implant thermal coupling is less of a concern, inter-
implant communication latency becomes the barrier to the design
of a wireless-networked multi-site BCI. In response, we lean on lo-
cality sensitive hashing (LSH) [49], a technique used for fast signal
matching [58]. LSH offers a way to filter inter-implant communi-
cation to only those neural signals most likely to be correlated (as
determined by similarity measures like DTW, EMD, etc.).

We base SCALO’s design on prior LSH work for DTW [71] and
EMD [40]. LSH approaches for DTW [71] first create sketches of
neural signals by calculating the dot product of sliding windows
in the signal with a random vector. The sketch of a window is 1 if
the dot product is positive and 0 otherwise. Then, the occurrences
of all n-grams formed by 𝑛 consecutive sketches are counted. The
n-grams and their counts are used by a randomized weighted min-
hash step to produce the hash. The LSH for EMD [40] calculates
the dot product of the entire signal with a random vector, and then
computes a linear function of the dot product’s square root.

3 THE SCALO ARCHITECTURE
Figure 2 shows SCALO and its implants (or nodes). Each SCALO
node contains 16-bit ADCs/DACs, an accelerator/PE-rich reconfig-
urable processor, an NVM layer, a radio for inter-node (intra-BCI)
communication and another radio for external communication, as
well as a power supply. SCALO can run various applications and
interactive queries expressed widely-used high-level languages. An
ILP scheduler maps their operations onto the nodes optimally.

3.1 On-BCI Distributed Neural Pipelines
Our first step is to convert the pipelines in Figure 1 into counterparts
amenable for distributed processing. One enhancement is to enable
the pipelines to use storage to assess correlations over multiple
timescales. The more critical enhancement is to modify the pipeline
to mitigate the inter-node communication bottleneck.

First, we split signal comparison into a fast hash check, and
subsequent exact comparison. The hash check identifies neural
data that is (in high probability) uncorrelated among brain regions,
and hence unnecessary for inter-node exchange. Hashes are 100×
smaller than signals, and can be quickly and accurately generated.
They significantly filter compute and inter-node communication.

Second, we decompose classifiers like SVMs and neural networks
(NNs) to reduce the dimension of data being communicated. Instead
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(a) SCALO overview. (b) The processor fabric in each of SCALO’s nodes.

Figure 2: The SCALO BCI is a distributed network of nodes implanted inmultiple brain sites. The nodes communicate wirelessly
with each other and the environment. Each SCALO node has sensors, radios, analog/digital conversion, processing fabric, and
storage; the processing fabric contains hardware accelerators and configurable switches to create different pipelines.

of the conventional approach of applying a classifier to all neural
data from all brain sites, each of SCALO’s nodes calculates a partial
classifier output on its own data. All outputs are aggregated on a
node to calculate the final result. Local classifier outputs are 100×
smaller than the raw inputs; communicating the former rather than
the latter reduces network usage significantly. Decomposing linear
SVMs is trivial and does not affect accuracy. NNs are similarly
decomposed by distributing the rows of the weight matrices.

Third, we centralize the matrix inversion operation used in the
Kalman filter. The Kalman filter generates large matrices as inter-
mediate products from lower-dimensional electrode features, and
inverts one such matrix [159]. Distributing (and communicating)
large matrices over our wireless (and serialized) network violates
our response time goals (Section 2.3). Therefore, we directly send
the electrode features from all sites to a single implant which com-
putes the filter output, including the intermediate inversion step.

Figure 3a shows our new distributed seizure propagation analysis.
Each electrode’s samples are collected in a sliding window (e.g., 120
samples) and then used to generate a hash. Hashes are stored in
the NVM. When a SCALO node detects a seizure on one or more
signal windows, it broadcasts the corresponding hashes to other
nodes. Receiver nodes check if these hashes match with any of
their recently stored local hashes and respond on a match. The
original node broadcasts the full signal window corresponding to
the matching hash. Receiver nodes confirm seizure propagation by
exactly comparing their local signals with the received ones. Finally,
electrical stimulation can be applied at all locations with a seizure
spread. Importantly, local per-node seizure detection (omitted in
Figure Figure 3a) continues unabated during this correlation step.

Figure 3b shows our distributed movement decoding applica-
tion. Algorithms A○ and C○ benefit from hierarchically decomposed
SVMs and NNs. Each node computes a partial local output. A single
node aggregates outputs and generates a final decision. In Algo-
rithm B○, each node extracts features locally and transmits them to
a node running the Kalman filter to decode movement intent.

Finally, Figure 3c shows our online spike sorting pipeline. Spike
sorting benefits from hash-based signal processing and storage.

Spikes from the incoming signals are detected, and encoded with
hashes. These hashes are compared with the hashes of templates
that are locally stored in each node to classify the spike waveforms.
Since spike sorting is a precursor to advanced processing [16], our
fast online version can benefit many applications.

(a) Seizure propagation analysis.

(b) Decoding movement intent and stimulating as a response.

(c) Spike sorting.

Figure 3: High-level overview of the BCI applications sup-
ported for online distributed processing in SCALO.
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3.2 Flexible & Energy-Efficient Accelerators
SCALO’s nodes are based on an augmented version of our prior
work, HALO [52]. SCALO’s PEs can be reused across applications,
and have deterministic latency/power. Wide-reuse PEs minimize
design and verification effort, and on-chip area. Deterministic la-
tency/power enables simple and optimal application scheduling.

Figure 2b shows the processor in each SCALO node. There are
many PEs (functions described in the appendix) connected with
programmable switches. The switches can be configured to realize
various processing pipelines. Being a GALS design, it is easy to
even configure PEs across multiple nodes in a pipeline. In addition
to the PEs from our prior work for single-site applications [52], we
incorporate new functionality to support distributed applications.

LSH support: We build hash support for four commonly-used
signal similarity measures – Euclidean distance, cross-correlation
(XCOR), DTW distance, and EMD [82].

Prior work has proposed an LSH specifically for DTW [71], but
we discover that by varying the LSH’s parameters, it can also serve
as a hash for Euclidean distance and cross-correlation. Our discov-
ery enables the design of a single LSH PE that can generate hashes
for all three measures. To accommodate the LSH for EMD [40], we
identify a shared dot product with the LSH for DTW (Section 2.4).
In sum, we design three PEs to support all LSHs: dot product compu-
tation (HCONV), n-gram count and weighted min-hash (NGRAM),
and square root (EMDH).

A crucial aspect of our LSH PEs is that the weighted min-hash
calculation from prior work [71] uses a variable-latency random-
ization step. To guarantee deterministic latency and power while
preserving the LSH property, we use an alternative method [54].

When hashes are received by a node for matching, they are sent
to the CCHECK PE that stores them in SRAM registers and sorts
them in place. The PE reads local hashes up to a configurable past
time (e.g., 100ms) from the on-chip storage, and checks for matches
with the received hashes using binary search.

Signal comparison: We use PEs for selecting the signals to be
broadcast (CSEL) and for comparison (DTW, XCOR). The DTW
PE uses a pipelined implementation of the standard DTW algo-
rithm [63] with a Sakoe-Chiba band parameter for faster compu-
tation [112]. The same PE measures Euclidean distance by setting
the band parameter to 1. We reuse the XCOR PE from HALO [52].

EMD is more computationally expensive than all other measures,
but we use a fast version [101] for which the on-chip general-
purpose microcontroller (described later) was sufficient. We are
currently investigating PE design for the full EMD calculation.

Linear Algebra Computations: While HALO originally inte-
grated an SVM PE, distributed applications require more complex
linear algebra (e.g., matrix multiplication and inversion) for which
we build linear algebra PEs (LIN ALG). LIN ALG has PEs for matrix
multiplication and addition with a constant matrix (MAD), matrix
addition (ADD), subtraction (SUB), and inversion (INV). MAD can
be configured to perform multiplication (MUL) only. All PEs use
16 KB registers with single-cycle access to store input matrices and
constants. Larger entries can be read from the NVM.

Because SCALO does not support loops, applicationswith several
MAD operations can be accelerated by either replicating MAD PEs

or saving values to memory. For <10 MAD operations, the latency
benefits of PE replication outweigh its hardware cost, and we use 10
MADPEs in the LINALG cluster. FourMADPEs are tiled into 4-way
blocks to support large matrix operations found in the Kalman filter.
We do not tile all MAD PE units since the remaining operations in
the Kalman filter use smaller matrices.

We implement rectified linear activation (ReLU) and normaliza-
tion operations used in NNs by adding configurable parameters to
the MAD and ADD units. When the ReLU parameter is set, the units
suppress negative outputs by replacing them with 0. When normal-
ization is set, the units read the mean and standard deviation as
parameters and normalize the output. We implement matrix inver-
sion in hardware using the Gauss-Jordan elimination method [105].

Networking Support: The intra-SCALO network carries hashes
and signals/signal features. As network data rate is low, compres-
sion increases transmitted item count. However, because compres-
sion reduces redundancy, it also increases susceptibility to network
errors. We strike a balance based on the likelihood of errors.

Signals remain lengthy after compression (≈120–240 B) and can
suffer errors for a given network bit error rate (BER). Measures like
DTW are naturally resilient to errors for uncompressed signals, but
lose accuracy using erroneous compressed signals. Signal features
like those used to decode movement intent are lengthy and sensitive
to errors when compressed. We therefore avoid compressing them.

Hash comparison also fails quickly with erroneous hashes, but
such errors are 100× less likely because hashes are short even before
compression (1–2 B). We therefore compress hashes. When hashes
suffer an error, comparison can still proceedwith subsequent hashes
because brain signals at a site are temporally correlated. We show
that it takes an unusually high BER to delay the application (e.g.,
seizure propagation) by 1ms (Section 6.7).

HALO’s PEs (i.e., LZ/LZMA) [52] were originally built to transmit
large volumes of data to external servers and are not suitable for low-
latency hash compression. We develop new PEs to compress intra-
SCALO communication. The HFREQ PE collects each node’s hash
values and sorts them by frequency of occurrence. The HCOMP PE
applies multiple compression algorithms serially. It first encodes
the hashes with dictionary coding, then uses run-length encoding
of the dictionary indexes [104], and finally uses Elias-𝛾 coding [31]
on the run-length counts. By customizing the compression strategy
to the data, HCOMP achieves a compression ratio that is only 10%
lower than that of LZ4/LZMA, but uses 7× less power.

Compressed data is sent to the NPACK PE, which adds check-
sums before transmission. There are UNPACK and DCOMP PEs to
decode and decompress packets respectively, on the receiving side.

Storage Control: Access to the on-chip NVM is managed by the
SC PE. This PE has SRAM to buffer writes before they are sent to the
NVM as 4 KB pages and during erase operations. The SRAM is also
used to reorganize the data layout (Section 3.3) to speedup future
reads from the NVM. Finally, SC uses registers to store metadata
(e.g., the last written page) to speedup recent data retrieval.

Microcontroller: SCALO has a RISC-V microcontroller, MC, for
several operations. It configures PEs into pipelines, and runs neural
stimulation commands. The MC is also used for computations not
supported by any PEs such as new algorithms, or infrequently run
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system operations such as clock synchronization (Section 3.6). The
MC runs at a low frequency of 20MHz and integrates 8 KB SRAM.

Optimal Power Tuning: Each of SCALO’s PEs operates in its own
clock domain, similar to our prior work on HALO [52]. However,
HALO supported only one frequency per PE. This is not optimal
for SCALO’s applications, which sometimes operate on only on a
subset of electrode data. For example, seizure propagation requires
exact comparison for only a few signals to remain under target
response times. Running PEs at only one target frequency even
when input data rates may be lower, wastes power.

We add support for multiple frequencies per PE, and pick the
lowest necessary to sustain a target data rate, minimizing power.
SCALO’s PEs support a frequency 𝑓 𝑃𝐸𝑚𝑎𝑥 , high enough for the maxi-
mumdata rate, and divide it to 𝑓 𝑃𝐸𝑚𝑎𝑥/𝑘 , where𝑘 is user-programmable.
Division is achieved using a simple state machine and counter that
passes through every 𝑘 clock pulses. The counter consumes only
𝜇Ws [12]. We use multiple frequency rails to ensure the PE has the
same latency despite variable number of inputs.

3.3 Per-Implant NVM Storage
Each node integrates 128GB NVM to store (in separate partitions)
signals, hashes, and application data (e.g., weight matrices, spike
templates). The MC uses a fourth NVM partition. Partition sizes are
configurable. When full, the oldest partition data is overwritten.

We co-design the NVM data layout with PE access patterns
to meet ms-scale response times. SCALO’s ADCs and LSH PEs
generate values sequentially by electrode. Stored as is, extracting a
contiguous signal window of an electrode (used by most operations)
requires reading from several discontinuous NVM locations. We
reorganize neural data to store contiguous signals in chunks (with
a configurable chunk size). This enables data retrieval with fast
contiguous NVM reads. Our approach takes 5× longer for writes
(1.75ms), but is 10× faster for reads (0.035ms). Data is written once
but read multiple times, and writes are not on the critical path of
execution, while reads are. These two factors make our approach
more efficient. We reuse SC PE write buffers for this reorganization.

3.4 Networking
SCALO incorporates three networks. From our HALO work [52],
we retain the inter-PE circuit switched network, and the wireless
network to communicate with external devices up to 10m. We add
a new wireless network for intra-SCALO communication, using
a custom protocol with TDMA [79]. Our ILP generates a fixed
network schedule across all the nodes (Section 3.5).

The intra-SCALO network packets have an 84-bit header, and a
variable data size up to a maximum packet size of 256 bytes. The
header and data have 32-bit CRC32 checksums [102]. On an error,
the receiver drops the packet if it contains hashes, but uses it if it
has signals. This is because signal comparison measures like DTW
are naturally resilient to a few errors. We evaluate the impact of
allowing erroneous signal packets in Section 6.6.

3.5 Optimal System Scheduling
We use a software ILP-based scheduler to map tasks to PEs and
generate storage and network schedules. The deterministic latency

and power characteristics of our system components makes op-
timal software scheduling feasible. The scheduler takes as input
the dataflow graph of applications and queries, constraints like
the response time, and priorities of application tasks/stages (e.g.,
seizure detection versus signal comparison). A higher priority for a
task ensures that more electrodes signals are processed in it relative
to the others when all signals cannot be processed in all tasks.

Each task is modeled as a flow, and the ILPmaximizes the number
of electrodes processed in each flow. It ensures that overall response
time and power constraints are met. It is acceptable for two flows
to share the same PE. In this case, the signals from each flow are
interleaved and run at a single frequency, completing within the
same time as if they were run independently. The hardware tags
the signals from each flow to route them to the correct destinations.

3.6 System Maintenance

Clock synchronization: SCALO’s distributed processing requires
the clocks in each BCI node to be synchronized with a precision of
a few 𝜇s. The clocks we use are based on pausable clock generators
and clock control units [84, 169] that suffer only picoseconds of
clock uncertainty, a scale much smaller than our 𝜇s target. SCALO
also operates at the temperature of the human body and does not
experience clock drift due to temperature variance. Nevertheless,
SCALO synchronizes clocks once a day using SNTP [81].

In SNTP, one SCALO node is designated as the server. All other
nodes send messages to it to synchronize clocks. The clients send
their previously synchronized clock times and current times, while
the server sends its corresponding times. Clocks are adjusted based
on the difference between these values. This process repeats until
all the clocks are synchronized within the desired precision. During
clock synchronization, the intra-SCALO network is unavailable for
other operations, but tasks like seizure detection that do not need
the network continue unimpeded.

Wireless Charging: Powering BCIs is an open problem, especially
for distributed implants. We assume that the SCALO nodes are wire-
lessly powered, similar to prior demonstrations for distributed [66]
and centralized sensor implants [2, 43, 123, 164, 170] (even though
wired power delivery through a hub is also possible [96]). When
charging wirelessly, we pause all pipelines to avoid overheating.
While charging frequency and duration varies by algorithm and
battery technology [123, 170], recent work has shown that it is
possible to have 24-hour operation with 2 hours of charging [123].

3.7 Programming & Compilation
Figure 4 shows how SCALO is programmed. Clinicians or neurosci-
entists create programs in popular high-level languages like MAT-
LAB [74] or TrillDSP [90] to describe signal processing pipelines
or interactive queries. We support a subset of these languages to
enable static scheduling (e.g., only fixed loop iterations).

Figure 4: Programming and Interacting with SCALO.
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Figure 5: Seizure detection and propagation on SCALO. The colors of the PEs are
matched with the high-level tasks from Figure 3a.

Figure 7: Spike sorting on SCALO.

Listing 1 shows movement intent decoding with a Kalman filter,
and Listing 2 shows a complex interactive query, both written in
TrillDSP. The query detects seizures from signals in the last 5 s at
all nodes, and sends the data 100ms before/after detected seizures.

var movements = stream.window(wsize =50ms).sbp()
.kf(kf_params).call_runtime ()

Listing 1: Movement Intent using a Kalman filter in TrillDSP.

var seizure_data = stream.Map( // group by location

s => s.select(s => s.data), s.locID)

.window(wsize =4ms).select(w => w.time >= -5000).

select(w => w.seizure_detect (), w[-100ms:100ms])

Listing 2: Interactively querying seizure data.

Programs are parsed into dataflow directed acyclic graphs (DAGs).
A configuration file maintains details of the components (the power
consumption of PEs, radio data rates, etc.), overall constraints, and
priorities (Section 3.5). The DAG and configuration file are used to
formulate an ILP, which is solved with standard software (e.g., [73]).

The optimal schedule from the ILP solver contains the mapping
of tasks to PEs and the network schedule. It is translated to assembly
instructions that can be run on the per-node MCs. Translation
occurs in two steps. From the ILP output, we first generate a C
program using a library of predefined functions to configure the
parameters of the PEs and their connections. Next, the program and
the library are compiled to obtain RISC-V binaries. We also develop
a lightweight runtime on the MC that listens to the external radio
for data and code, and reconfigures PEs and pipelines.

4 DEPLOYING SCALO
Figure 5 shows the seizure propagation pipeline on SCALO. The
colors of the PEs are matched with the high level tasks from Figure 3.
In this pipeline, seizure detection uses FFT, Butterworth bandpass
filters (BBF) and XCOR for feature extraction, followed by an SVM
for classification [118]. Signals are compared with DTW [69].

Figure 6 shows the movement intent pipelines on SCALO. Al-
gorithm A○’s implementation is derived from multiple sources [94,
116, 124]. Algorithms B○ and C○ are implemented based on prior
designs [162] and [159], respectively. In our implementation of Al-
gorithm B○, we do not change the Kalman filter parameters online
as done in some variants [162] although SCALO supports it.

In Figure 6b, since the Kalman filter needs its output from the
previous time step, we save this value to a buffer at the end of the
pipeline. Additionally, the inversion operation (INV) needs to use
the NVM because the matrix is too big to fit in the PE memory.

Last, Figure 7 shows online spike sorting using EMD hashes and
templates, derived from prior work [111] and [41].

(a) Algorithm A○.

(b) Algorithm B○.

(c) Algorithm C○.

Figure 6: Movement intent on SCALO.

5 EXPERIMENTAL SETUP
Processing fabric: SCALO’s PEs are designed and synthesized
with Cadence tools at a commercial 28 nm fully-depleted silicon-
on-insulator (FD-SOI) CMOS process. We use standard cell libraries
from STMicroelectronic and foundry-supplied memory macros that
are interpolated to 40 °C, which is close to human body temperature.
We design each PE for its highest frequency, and scale the power
when using it at lower frequency. We run multi-corner, physically-
aware synthesis, and use latency and power measurements from
the worst variation corner. Table 1 shows these values. We confirm
these values with partial tape-outs at 12 nm [129]. In the table, blank
entries indicate data-dependent latencies. The SC can take 0.03 or
0.04ms depending on the NVM being available or busy.

We assume that each node uses a standard 96-electrode array [14]
to sense neural activity, and has a configurable 16-bit ADC [117]
running at 30 KHz per electrode. The ADC dissipates 2.88mW for
1 sample from all 96 electrodes. Each node also has a DAC for
electrical stimulation [76], which can consume ≈0.6mW of power.
Radio parameters:We use a radio that transmits/receives up to
10m with external devices at 46Mbps, 250MHz, and consumes
9.2mW [52]. For intra-SCALO communication, we consider a state-
of-the-art radio designed for safe implantation [107]. We modify
the radio, originally designed for asymmetric transmit/receive, for
symmetric communication. The radio can transmit up to 20 cm (>
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Table 1: Latency and Power of the PEs.

Processing Max Freq Power (𝜇𝑊 ) Latency Area
Elements (MHz) Leakage (SRAM) Dyn/Elec (ms) (KGE)

ADD 3 0.08 (0.00) 0.983 2 68
AES 5 53 (0.00) 0.61 - 55
BBF 6 66.00 (19.88) 0.35 4.00 23
BMUL 3 145 (0.00) 1.544 2 77
CCHECK 16.393 7.20 (0.88) 0.14 0.50 3
CSEL 0.1 4.00 (0.00) 6.00 0.04 2
DCOMP 16.393 7.20 (0.00) 0.14 0.50 3
DTW 50 167.93 (48.50) 26.94 0.003 72
DWT 3 4 (0.00) 0.02 4 2
EMDH 0.03 10.47 (0.00) 0.00 0.04 9
FFT 15.7 141.97 (85.58) 9.02 4.00 22
GATE 5 67.00 (34.37) 0.63 0.00 17
HCOMP 2.88 77.00 (0.00) 0.65 4.00 4
HCONV 3 89.89 (0.00) 0.80 1.50 8
HFREQ 2.88 61.98 (0.00) 0.52 4.00 6
INV 41 0.267 (0.00) 11.875 30 167
LIC 22.5 63 (6.00) 3.26 - 55
LZ 129 150 (95.00) 30.43 - 55
MA 92 194 (67.00) 32.76 - 55
NEO 3 12.00 (0.00) 0.03 4.00 5
NGRAM 0.2 15.69 (9.07) 0.08 1.50 10
NPACK 3 3.53 (0.00) 5.49 0.008 2
RC 90 29 (0.00) 7.95 - 55
SBP 3 12.00 (0.00) 0.03 0.03 6
SC 3.2 95.30 (64.49) 1.64 0.03-4 12
SUB 3 0.08 (0.00) 0.988 2 69
SVM 3 99.00 (53.58) 0.53 1.67 8
THR 16 2.00 (0.00) 0.11 0.06 1
TOK 6 5.57 (0.00) 0.14 0.001 3
UNPACK 3 3.53 (0.00) 5.49 0.008 2
XCOR 85 377.00 (306.88) 44.11 4.00 81

90𝑡ℎ percentile head breadth [168]). To estimate power and data
rates, we use path-loss models [83] with a path-loss parameter of 3.5
for transmission through the brain, skull, and skin, like prior stud-
ies [113, 137]. Our radio can transmit/receive 7Mbps at 4.12GHz
and consumes 1.721mW. We evaluate other radios in Section 7.
Non-volatile memory:We use NVMs with 4KB page sizes and
1MB block sizes. An NVM operation can read 8 bytes, write a
page, or erase a block. We use NVSim to model NVM and set the
SLC NAND erase time (1.5ms), program time (350 us), and voltage
(2.7 V) from industrial technical reports [80].We choose a low power
transistor type, and use a temperature of 40 °C. NVSim estimates
a leakage power of 0.26mW, dynamic energies of 918.809 nJ and
1374 nJ per page for reads and writes, respectively. We use these
parameters to size our SC buffers to 24 KB.
Thermal and power limits: No brain region can be overheated
beyond 1 °C [160]. The corresponding power cap depends on pack-
aging, implantation depth, and, for multiple implants, the spacing
among implants. Like prior work [39, 52, 57, 121, 122, 146], we as-
sume SCALO’s implants are expected to be deployed as cuboidal
strips or cylindrical capsules near the cortical surface, with the
electrodes extending 1.5–2mm into the brain gray matter. At this
depth, no implant can dissipate more than 15mW [52, 57, 121, 122].

Earlier finite-element analyses of heat dissipation through brain
tissues have shown that the temperature increase from an implant
falls exponentially with distance, due to blood and cerebrospinal
fluid flow [32, 57, 121, 122, 147, 149]. At 10mm from an implant’s
edge, the temperature rise is ≈5% of the peak, and at 20mm, the
rise is only 2% with negligible thermal coupling between implants.

We use 20mm as the default spacing in SCALO. Assuming uni-
form and optimal distribution of implants on a hemispherical brain
surface of 86mm radius [88], up to 60 SCALO implants can be
run at 15mW each, with negligible thermal coupling. Nonetheless,

since node placement may vary by deployment, we report SCALO’s
performance when the nodes can consume only 12, 9, and 6mW
power, i.e., 60%, 40%, and 20% lower limits.
Electrophysiological data:We use publicly available electrophys-
iological data for our evaluation [48, 72, 159]. For seizure detection
and propagation, we use data from the Mayo Clinic [48] of a patient
(label “I001_P013") with 76 electrodes implanted in the parietal and
occipital lobes. This data was recorded for 4 days at 5 KHz, and is an-
notated with seizure instances. We upscaled the sampling frequency
to 30 KHz, and split the dataset to emulate multiple implants.

We use overlapping 4ms windows (120 samples) from the elec-
trodes to detect seizures [115]. For propagation, we compare a
seizure-positive signal with the signals in the last 100ms at all
other nodes. When hashing, we use an 8-bit hash for a 4ms signal.

We use three datasets to evaluate spike sorting. We use the
Spikeforest dataset [72], with recordings collected from the CA1
region of a rat hippocampus using tetrode electrodes at 30 KHz
sampling frequency. The dataset contains spikes from 10 neurons,
with 65,000 spikes from 4 channels that were manually sorted. We
also use the Kilosort [97] dataset, which has 35,000 spikes from 30
neurons collected with a neuropixel probe with 384 channels [97].
Finally, we use theMEArec dataset [18], which contains 4,544 spikes
from 20 neurons, generated using a neuron cell simulation model.
Alternative system architectures: Table 2 shows the systems
that we compare SCALO against. SCALO No-Hash uses the SCALO
architecture but without hashes. The power saved by removing
the hash PEs is allocated to the remaining tasks optimally. Central
No-Hash uses a single processor without hashes like most existing
BCIs [3, 56, 120]. The processor is connected to the multiple sensors
using wires. Central is another single-processor design, but uses
hashes like SCALO. Finally, we have HALO+NVM, which uses a
single HALO processor from prior work [52], augmented with an
NVM to support our applications. Since this design does not have
our new PEs, it uses the RISC-V processor for tasks like hashing.

We do not consider (1) wired distributed designs because it is
impractical to have all-to-all wires on the brain surface, (2) wireless
centralized designs as they have lesser compute available than the
wired ones, and (3) designswithout storage since all our applications
need it. We map the applications onto all systems using the ILP,
ensuring that each implant consumes < 15mW.

Table 2: Alternative BCI architectures.

Design Architecture Comparison Communication

SCALO (Proposed) Distributed Hash, Signal Wireless
SCALO No-Hash Distributed Signal Wireless
Central No-Hash Centralized Signal Wired
Central Centralized Hash, Signal Wired
HALO+NVM Centralized Hash, Signal Wired

6 EVALUATION
6.1 Comparing BCI Architectures
We compare BCI architectures using their “maximum aggregate
throughput” per application. This value is the throughput achieved
(over all nodes) for an application when it is the only one running
on SCALO. Aggregate throughput is calculated by increasing the
number of electrode signals (and ADCs) that the node can process
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Figure 8: Experimental quantification of SCALO’s benefits.

until the available power is fully utilized, or response time is vi-
olated. We consider a total of 11 implanted sites, which has the
highest seizure propagation throughput for SCALO and SCALO
No-Hash (Section 6.3). We later vary the number of nodes.

Figure 8a shows performance results. We separate seizure detec-
tion and signal similarity in the seizure propagation application,
since the former is local while the latter is distributed. Among the
centralized designs, HALO+NVM does not have SCALO’s new PEs
but has the same performance as Central and Central No-Hash for
seizure detection and SVM-based movement intent (MI SVM). This
is because the PEs in HALO+NVM are sufficient for these tasks. On
the other hand, HALO+NVM is 10–100× worse than Central for the
remaining tasks because they are run on a slow microcontroller. For
the spike sorting application, despite using hashing, HALO+NVM
has a 40% lower throughput than Central No-Hash because checking
for hash collisions on the microcontroller is slower than running
an exact comparison on a PE in Central No-Hash. This performance
gap highlights the need for hardware acceleration.

Central No-Hash has 250× and 24.5× lower throughput than Cen-
tral for signal similarity and spike sorting respectively. These tasks
benefit from hashes while Central No-Hash does not support hash-
ing. The impact of not hashing is much more pronounced for signal
similarity because this task involves inter-implant communication.
Without hashes, the number of signals that can be communicated
and compared under the power limit is low.

Central performs best among uniprocessor designs. However,
the processor is the bottleneck for multi-site interfacing, and Cen-
tral has 10× lower throughput than SCALO for all applications.
One exception is the movement intent with Kalman filter (MI KF)
application. In this case, SCALO also centralizes the computations
(Section 3.1), resulting in a similar throughput for the two designs.

With SCALO No-Hash, overall processing capability scales with
number of implants, as seen by throughput for seizure detection
and MI SVM. However, SCALO No-Hash does not use hashing and
performs worse than Central for signal similarity and spike sorting.

Finally, SCALO has the highest throughput for all applications.
SCALO’s LSH features enables scaling with more implants. Com-
pared to HALO+NVM, which is the state-of-the-art prior work,

SCALO’s processing rates are 10× higher for seizure detection and
MI KF, and are up to 385× higher for the remaining applications.

6.2 Performance Scalability
We evaluate the performance (maximum aggregate throughput)
of SCALO for our applications with various node counts and per-
node power limits. Among the applications, the seizure detection
task and spike sorting are fully local to each node. Among these,
seizure detection has more complex operations than spike sorting.
The throughput of seizure detection at 15mW is 79Mbps and falls
quadratically to 46Mbps at 6mW. Spike sorting has a throughput of
118Mbps at 15mW, which decreases linearly to 38.4Mbps at 6mW.

For the remaining applications, which are distributed, Figures 8b
and 8c show their performance scaling with varying node counts
and power limits. Figure 8b shows the performance of hash and
exact (DTW) signal similarity methods separately, under two com-
munication patterns each. The first is all-to-all, which is the worst
case communication pattern that occurs when brain-wide correla-
tions must be identified, e.g., when there is a seizure at all nodes.
The other is one-to-all communication, which occurs when only a
single node detects a seizure and must broadcast its data.

DTW All-All has the least throughput because only 16 electrode
signals can be transmitted in this mode. The reason is that the intra-
SCALO radio can only transmit ≈7Mbps, while new electrode sam-
ples are obtained at 46Mbps from the ADC. Increasing the number
of nodes decreases the throughput further because each node must
serially access the TDMA network. Being communication-limited,
DTW All-All is unaffected by lowering power limits even up to
6mW. The DTW PE only needs 4mW to process data at the avail-
able radio transmission rate, and its throughput scales linearly with
power only below 4mW.

DTW One-All scales better as its communication cost is fixed.
However, a one-to-all comparison is insufficient for general BCI
applications. DTWOne-All is also communication-limited like DTW
All-All and remains unaffected by lower power up to 4mW.

The throughput of Hash All-All is 10× higher than that of DTW
One-All for node counts ≤6. Relative to DTW All-All, the perfor-
mance advantage is even higher. Hash All-All throughput linearly
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increases up to to 547Mbps (for 6 nodes with 190 electrode signals),
after which it begins to decrease. When the number of nodes is
small, few TDMA slots are required to exchange all hashes, allow-
ing throughput to linearly increase with node count. When node
count increases beyond a limit (i.e. 6), it takes longer to communi-
cate all hashes and overall throughput reduces. Hash One-All has a
10× higher throughput than even Hash All-All, and exhibits linear
scaling since the communication cost is fixed.

Hash processing is not communication-limited, as the transmit-
ted is small (1 B per electrode versus 256 B for DTW). Throughput
falls linearly when the power limit is lowered. Keeping number
of nodes equal, for Hash All-All, peak throughput reduces from
547Mbps at 15mW to 135.35Mbps at 6mW, while for Hash One-All,
it reduces from 6,851Mbps at 15mW to 1,444Mbps at 6mW.

Figure 8c shows the performance of the movement intent ap-
plications. These use an all-to-one communication pattern: MI KF
sends the features from all nodes, while MI SVM and MI NN send
partial classifier outputs to one node. MI SVM transmits only 4 B
per node even if the number of electrodes per node goes beyond
96, because it only needs to send the partial classifier output and
not electrode data. Additionally, for a given power limit, MI SVM
can process 3% more electrodes than hash generation because the
SVM PE consumes 3% lower power than the hash PEs. Therefore,
MI SVM has the highest throughput than even Hash One-All, which
also scales linearly with node size.

MI NN, like MI SVM, has a fixed data transmission size per node,
but the size of this data is higher (1024 B). Therefore, it has a lower
throughput than MI SVM but has the same scaling trend. Both are
power limited and see a linear decrease in throughput with power.

In contrast to the other MI applications, MI KF transmits much
higher data at 4 B per electrode, since it transmits only features
for centralized processing. Furthermore, the inversion step in MI
KF at the receiver has a high usage of the NVM. Therefore, MI
KF ’s throughput scales linearly only up to 4 nodes, where the
NVM bandwidth saturates and the application cannot process any
more electrodes in the given response time. Therefore, with higher
number of nodes, the number of electrodes that can be processed
per node decreases, and overall throughput remains the same.

MI KF is limited only by NVM bandwidth above 8.5mW power,
and does not see any throughput reduction until the power limit
reaches this value. Below this, throughput falls off quadratically.

6.3 Application Performance
Wemeasure application-level performance via throughput for seizure
propagation, number of intents per second for the movement appli-
cations, and the spikes sorted, for various node counts.

Seizure propagation has multiple inter-related tasks since seizure
detection can run concurrently with hash or DTW comparison, and
there is a choice between sending more hashes or signals in the
given response time. Hence, it is necessary to specify priorities
for these tasks to determine the application performance. Recall
that the ILP maximizes the priority-weighted sum of the signals
processed in the tasks. Although the ultimate choice of weights is
determined by a clinician, we evaluate three sets of weights.

Figure 9a shows the maximum weighted aggregate throughput
for seizure propagation with different weight choices (in the format;
seizure detection:hash comparison:DTW comparison). With equal

priority for all tasks, throughput increases linearly up to 506Mbps,
achieved at 11 nodes. The highest throughput per node is achieved
at this node count. Beyond this value, overall throughput increases
sublinearly due to communication costs. Other weight choices have
different throughput and optimal node counts.
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(a) Weighted throughput of
seizure propagation tasks.
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(b) Movement intents per sec-
ond.

Figure 9: Application level metrics on SCALO.
Conventional movement intent (MI) applications use a fixed time

interval (e.g., 50ms) to detect one intent. This limits the number of
intents detected (i.e., 20 per second). SCALO decodes movements
much faster than this interval.

Figure 9b shows the maximum number of intents detected per
second on SCALO. This metric only accounts for intent detection,
without the variable response latency of the prosthetic. SCALO
significantly outperforms conventional MI SVM and MI NN, which
offer only 20 intents per second and for a few electrodes [159] (not
shown in the figure). For MI KF, which is the most complex MI
application, SCALO also supports 20 intents per second but can
process up to a total of 384 electrodes, which is up to 4 nodes for a
96-electrode node. For higher node count, SCALO can still retain
its performance but the electrodes processed per node decrease.

Finally, SCALO sorts up to 12,250 spikes per second per node by
using hashes to match spikes with preset templates on the NVM. For
reference, leading off-device exact matching algorithms sort up to
≈15,000 spikes per second but use multicore CPUs or GPUs [28, 97].
The sorting accuracy of SCALO is within 5% of that achieved by
exact template matching, which is 82%, 91%, and 73%, respectively
for the SpikeForest [72], MEArec [18], and Kilosort [97] datasets.

6.4 Interactive Queries
We consider three common queries for data ranging from the past
110ms (≈7MB over all nodes) to the past 1 s (≈60MB). They are:Q1,
which returns all signals detected as a seizure; Q2, which returns
all signals that match a given template using a hash; and Q3, which
returns all data in the time range. For Q1 and Q2, we set the fraction
of data that tests positive for their condition at 5%, 50%, and 100%.
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Figure 10: Interactive query throughput with 11 nodes.
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Figure 11: Hash errors.
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Figure 12: Network errors.
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Figure 13: Impact of radio.
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Figure 14: Hash flexibility.

Figure 10 shows SCALO’s throughput with 11 nodes for our
queries. SCALO supports up to 9 queries per second (QPS) for Q1
and Q2 over the last 110ms data for 5% matched data, which is the
common range of data queried over. If Q2 is run with DTW instead
of hashes, the QPS is 8, which is only slightly lower, but the power
consumption increases to 15mW instead of the 3.57mW consumed
with hash-based matching. DTW-based matching is unsuitable
when interactively querying in response to a seizure. Q3 takes 1.21 s,
yielding a throughput of ≈0.8. The power-hungry external radio
becomes the bottleneck for interactive querying. Query latency
increases linearly with more search data because of radio latency.
Still, SCALO can processes 1 QPS for Q1 and Q2 for the past 1 s
data (≈60MB) with 5% matched data, making it usable in real time.

6.5 Hash Encoding Accuracy
We measure the accuracy of hash-based signal comparison relative
to exact comparison for various measures. For each measure, we set
a similarity threshold. If the measure for a given pair of signals is
above the threshold, they are considered similar. We then configure
our hash generation functions for this threshold, and check for
the same outcome using hashes, i.e., only similar signals should
generate the same hash. Figure 11 shows the percentage of errors
between hash and signal comparison as a function of the signals’
distance from the threshold. The total errors, represented as area
under the curve, are few at <8.5%. Most hash errors occur close to
the threshold, where even exact comparison is of low confidence
in identifying a match, and errors taper off quickly with distance
from the threshold. Note that we bias the hashes towards false
positives (left of the threshold), since they can be resolved by an
exact comparison.

6.6 Impact of Network Errors
The intra-SCALO network protocol drops packets carrying hashes
when there is a checksum error, but allows signal packets to flow
into PEs since signal similarity measures are naturally resilient to
errors. We simulate bit-error ratios (BERs) with uniformly-random
bit flips in packet headers/data. Figure 12 shows the fraction of
hash/signal packets with an error at different BERs, and the fraction
of erroneous signal packets that flipped the similarity measure
(DTW). The BER is < 10−5 for the radio we use.

Figure 12 shows that signals and hashes suffer errors as BER
increases, but signals are more susceptible since they are longer.
However, even though many signal packets suffer errors, they have

no impact on the final signal similarity outcome since the measures
are naturally resilient. For our design (BER < 10−5), <1% of hash
packets have errors and there is no DTW failure.

6.7 Error Impact on Applications
Hash errors, caused either due to incorrect encoding or network
faults, can affect application performance. However, signals in the
brain are spatially and temporally correlated, providing some re-
siliency to such errors. We use the time-sensitive seizure propaga-
tion application to study the impact of hash errors. In this appli-
cation, a false negative or a hash packet error can cause seizure
propagation confirmation to be delayed.

Figure 15 shows the maximum delay in seizure propagation
for each type of error when there is a correlated seizure in two
brain regions, showing the 100% intervals after 1000 repetitions.
Figure 15a shows that hash encoding errors (which in this case are
false negatives because there is an ongoing correlated seizure) do
not cause any noticeable impact until the error rate is around 50%.
The reason for this resiliency is that when a seizure occurs, it is
captured by multiple electrodes. It is highly unlikely that all such
signals are incorrectly encoded to completely miss the correlation
at this time step. For reference, we observe only 12.5% of false
negatives in SCALO. Furthermore, a seizure lasts for a few seconds,
meaning that another round of correlation checking can occur at
the next time step even if it is missed in the current time step.
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Figure 15: Maximum delay in detecting seizure propagation
due to hash errors, averaged over all seizures. Shaded regions
show the full range of observations.

Figure 15b shows the application-level delay with network BER.
Recall that all hashes from a node can be sent in one packet. There-
fore, a network error results in the loss of the hashes from all
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electrodes at a node, and correlation can resume only at the next
time step. Consequently, network errors are more harmful than
encoding errors. However, these errors are also much less likely to
occur (note that the Y axis of Figure 15b is different from Figure 15a),
and the worst delay even at a BER of 10−4 is 0.5ms. For reference,
the radio we use has a BER of 10−5.

7 DESIGN SPACE EXPLORATION
Hash Parameter selection: Figure 14 shows the best parameters
for LSH (window size and n-gram size—Section 2.4) to approximate
different signal measures. We also show parameters (with lighter
colors in the figure) that are within 90% of the true positive rate
achieved by the corresponding best configuration. This flexibility
enables reusing the same hash (and PEs) for different measures.

Radio parameters: There are many radio designs for safe im-
plantation with various trade-offs between the data rate, power,
and BER [8, 21, 55, 110]. We evaluate the performance of hash
(All-All) and DTW (One-All) with four such radios listed in Ta-
ble 3. For all radios, we maintain a transmission distance of 20 cm
and scale the remaining parameters appropriately for this dis-
tance [83, 113, 137, 155]. Low Power is our default radio.

Table 3: Alternative radio designs. Our choice is Low Power

Name BER Data rate (Mbps) Power (mW)

Low Power 10−5 7 1.71
High Perf 10−6 14 6.85
Low BER 10−6 7 3.4
Low Data Rate 10−5 3.5 0.855

Figure 13 shows the throughput of the applications with the
different radios, normalized with that of our default choice (Low
Power) . The High Perf radio doubles the throughput of both ap-
plications because they are communication sensitive. However,
the radio power becomes 4×, occupying nearly half the available
15mW budget. The Low BER radio has the same performance as our
default, but has 2× the power. This trade-off is not advantageous
since our BER is already low (10−5). Lastly, the Low Data Rate radio
results in a 50% lower performance for the applications, which is
unacceptable for our response time targets.

8 RELATEDWORK
Single-site BCIs: Commercial and research BCIs have focused
largely on single-site monitoring and stimulation [52, 56, 77, 95,
132], and have no support for distributed systems, making them
unsuitable for the applications that we target. Most implantable
BCIs offer little to no storage and stream data out continuously
instead. NeuroChip [120] is an exception but is wired to an external
case with a 128GB SD card that is physically extracted for offline
data analysis.

Distributed implants: A growing interest in distributed analyses
of the brain [6, 10, 134] has motivated the design of multi-site
BCIs [3, 27, 68]. These BCIs, however, lack on-board processing and
stream data to a separate computer, or a chest or scalp mounted
processing hub. Unfortunately, such centralization restricts the
response time and throughput of the BCI, limiting its utility for
distributed applications.

Implantation architecture: SCALO presents just one example of
a distributed BCI. Alternative designs could include hubs that are
chest-implanted [64, 96, 144], or scalp mounted [123, 166]. Hubs
can serve as wired sources of power for the implants [96], while
the hub itself could be powered by removable or wirelessly charged
batteries [64, 96, 166] (it is less risky to wirelessly charge a chest-
implanted or externally mounted device). The hub may also act as
the sole processor in the system, using the distributed implants only
as sensors [64]. Yet another approach is to use wearable hubs [62].
The SCALO architecture can be adapted to suit these various sce-
narios, although one or more functionalities may not be applicable.

Accelerators for BCI applications: Recent work has designed
specialized hardware accelerators for spike sorting using template
matching [1], and DNN accelerators for classification using unary
networks [161]. These designs are promising, but consume higher
power than our target for implantation. We will study integrating
them into SCALO in the future.

9 CONCLUSION
SCALO enables BCI interfacing with multiple brain regions and
provides, for the first time, on-device computation for important
BCI applications. SCALO offers two orders of magnitude higher
task throughput, and provides real-time support for interactive
querying with up to 9 QPS over 7MB data or 1 QPS over 60MB data.
SCALO’s design principles—i.e., its modular PE architecture, fast-
but-approximate hash-based approach to signal similarity, support
for low-power and efficiently-indexed non-volatile storage, and a
centralized planner that produces near-optimal mapping of task
schedules to devices—can be instrumental to success in other power-
constrained environments like IoT (internet of things) as well.
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A ARTIFACT APPENDIX
Abstract
There are 4 artifacts for this paper: hash function library to repro-
duce Figure 11, a python program to reproduce Figure 12, a basic
query processor to generate ILP programs to recreate Figures 8a,
8b, 8c, 9a, 9b. The artifact also contains a Dockerfile to install all
requirements and run all tests to provide a push button solution.

Artifact check-list (meta-information)
• Programs: glpsol, python3, Docker, NVSim
• Compilation: Artifact includes scripts to compile NVSim from
source

• Data set: Artifact includes data collected from patient with label
I001_P013 downloaded from ieeg.org

• Run-time environment: Experiments are run on a Docker
container running Ubuntu 22.04, Linux 5.19

• Hardware: A Linux System with Intel X86-64 CPU, 8 GB RAM.
• Metrics: 1) Application throughput calculated using ILP 2) Hash
function error rates 3) Packet loss due to Bit Error Rate

• Output: Output generates plots in the paper, as described in
sections further

• Experiments: Experiments measure hash error rates, and the
packet loss due to bit errors,

• How much disk space required (approximately)?: 15 GB
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• How much time is needed to prepare workflow (approxi-
mately)?: 10-15 minutes

• How much time is needed to complete experiments (ap-
proximately)?: 30-45 minutes

• Publicly available?: Yes, 10.5281/zenodo.7787128
• Code licenses (if publicly available)?: CC4
• Archived?: 10.5281/zenodo.7787128

Processing Elements
Table 4 lists all our PEs.

Table 4: Processing Element Names

Name Function

ADD Matrix Adder
AES AES Encryption
BBF Butterworth Bandpass Filter
BMUL Block Multiplier
CCHECK Collision Check
CSEL Channel Selection
DCOMP Decompression
DTW Dynamic Time Warping
DWT Discrete Wavelet Transform
EMDH Earth-Mover’s Distance Hash
FFT Fast Fourier Transform
GATE Gate Module to buffer data
HCOMP Hash Compression
HCONV Hash Convolution Operation
HFREQ Hash Frequency
INV Matrix Inverter
LIC Linear Integer Coding
LZ Lempel Ziv
MA Markov Chain
NEO Non-linear Energy Operator
NGRAM Hash Ngram Generation
NPACK Network Packing
RC Range Coding
SBP Spike Band Power
SC Storage Controller
SUB Matrix Subtractor
SVM Support Vector Machine
THR Threshold
TOK Tokenizer
UNPACK Network Unpacking
XCOR Pearson’s Cross Correlation

A.1 Description
A.1.1 How to access. You can access the artifact at https://zenodo.
org/record/7787128

A.1.2 Hardware dependencies. A Linux machine with Docker in-
stalled, about 8 GB RAM, and 15 GB free disk space. The instructions
to run the experiments are specific to Linux on X86, but the artifacts
may work in other environments.

A.1.3 Software dependencies. Docker Our experiments can be run
quickly using scripts on Docker, though we also specify how to run
the experiments in python directly.

Software Python3, python libraries (matplotlib, numpy, scipy,
statsmodel, python-dtw), glpsol (from glpk-ultils package)

A.1.4 Data sets. Data collected from patient with label I001_P013
downloaded from ieeg.org. This data set contains EEG signals col-
lected from 76 electrodes implanted in the parietal and occipital
lobes, recorded at 5 KHz. The dataset was upscaled to about 30 KHz
an split to multiple files to simulate multiple BCI devices.

A.2 Installation
For a push button solution, install Docker using your Linux Dis-
tribution’s software installer. You can then create a container that
immediately runs all experiments. Run the following command
after extracting the artifact in the folder containing the Dockerfile
— $: docker build -t hull-archive .

This will start building an Ubuntu container, installing all de-
pendencies, then automatically running the experiments using the
scripts we provide.

Alternatively, you may run the experiments locally. The exper-
iments depend on python3 and certain python3 libraries. These
libraries can be installed by first installing python3 and pip3 using
your distribution’s installer. Following that, you can run —

$: pip3 install -r work/requirements.txt
inside the root directory of the artifact.
In addition to python, some experiments also use the GNU LP

solver, glpsol. This can be installed using your distribution’s in-
staller (eg by installing glpk-utils on Ubuntu).

A.3 Experiment workflow
If you set up Docker, the experiment would run automatically. After
the docker container is setup, you can copy the results on to the host
machine by running the following commands in separate terminals.

$docker run –name artifact -it hull-archive
$docker cp artifact:/work /path/in/host/to/store/
You can access all results (pdf files) in the respective directories

and view them by running $: ls work/*/*.pdf.
If you have set up a local install, you can run all experiments by

navigating to the work folder in artifact, then running —
$sh script.sh
Which will start running experiments one by one. This is ex-

pected to take 20-30 minutes. Once done, you can access the results
in the same way as mentioned above.

A.4 Evaluation and expected results
Hash Error Rates: This experiment evaluates the error rates of the
hash functions we describe in the paper, It exists inside work/hash
directory and is run using —

$: python3 hash_err_rates.py
It produces the hash_hist.pdf file in the same directory, and

should look similar to Figure 10 in the paper. There may be slight
differences due to randomization but such errors should be minimal
(≈ 1-2% absolute error)

NetworkBit Error Rates:This experiment evaluates the impact
of bit errors on the end application accuracy, and recreates Figure
12 from the paper. It exists inside work/ber directory, and is run
using —

$ python3 network_ber.py
Task throughput This experiment recreates Figures 8a, 8b, 8c

in the paper. The figures can be generated directly by running
fig7a.sh, fig7b.sh, and fig7c.sh inside the work/ilp directory.
Each script setups up helper python scripts to use hardware infor-
mation and application query to generate an ILP program. This
ILP program is then solved for an optimal solution using glpsol,
and then plotted using more helper python scripts. The hardware

https://zenodo.org/record/7787128
https://zenodo.org/record/7787128
ieeg.org
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information of the device is stored in HALO.json for convenient
access. Please refer to Table 4 to understand function of each PE.
Examples of queries are stored in txt files in the same directory, e.g.
seizure_detection.txt stores the query to run a seizure detec-
tion application. The directory also contains a readme.md file that
explains the grammar of the queries. You may also read the shell
script files for examples on running a query.

• describe_device.py is a helper python script to generate
json files for hardware

• create_ilp.py takes in the hardware information json file,
a query file, and a target number of devices to generate an
ILP program to find an optimal schedule for it on the SCALO
system.

Application Level Throughput: This experiment recreates
Figures 9a and 9b in the paper. While these experiments may
be run on the ILP as well, they take a long time to run due to
the larger number of variables and devices in the ILP program.
To obtain results faster, we have taken reduced linear equations
that resulted from a prior solution to quickly plot solutions for
larger problems. This can be generated by running $: python3
work/lineqn/seizure_Plus_hash.py. The equations, and their
weights are stored and explained in utils.py.

NVSim: This experiment shows the configuration for the NVM
used in SCALO. This is stored in work/NVSim/HULL.cfg. You can
then run $: ./nvsim HULL.cfg to view the energy, and bandwidth
numbers estimated by NVSim. Particularly, the tool estimates leak-
age power to be 0.26 mW, and dynamic energies of 918.809 nJ and
1374 nJ per page for reads and writes, respectively.

A.5 Experiment customization
Our scripts are set up to allow easy extension, customization, and
experimentation. The hash error program is set up to be run on
different input files with a small modification, along with code to
allow fast exploration of all parameters of the hash. The ILP is set
up to allow queries of different kinds with a readme explaining
writing custom queries.

A.6 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-badging
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
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