
TRINITY: A Fast Compressed Multi-attribute Data Store
Ziming Mao*

UC Berkeley
Kiran Srinivasan

NetApp
Anurag Khandelwal

Yale

Abstract
With the proliferation of attribute-rich machine-generated
data, emerging real-time monitoring, diagnosis, and visual-
ization tools ingest and analyze such data across multiple
attributes simultaneously. Due to the sheer volume of the
data, applications need storage-efficient and performant data
representations to analyze them efficiently.

We present TRINITY, a system that simultaneously facil-
itates query and storage efficiency across large volumes of
multi-attribute records. TRINITY accomplishes this through
a new dynamic, succinct, multi-dimensional data structure,
MDTRIE. MDTRIE employs a combination of novel Mor-
ton code generalization, a multi-attribute query algorithm,
and a self-indexed trie structure to achieve the above goals.
Our evaluation of TRINITY for real-world use-cases shows
that compared to state-of-the-art systems, it supports (1)
7.2–59.6× faster multi-attribute searches, (2) storage foot-
print comparable to OLAP columnar stores and 4.8–15.1×
lower than NoSQL stores and OLTP databases, and (3) point
query throughput comparable to NoSQL stores and 1.7–52.5×
higher than OLTP databases and OLAP columnar stores.

ACM Reference Format:
Ziming Mao, Kiran Srinivasan, and Anurag Khandelwal. 2024.
TRINITY: A Fast Compressed Multi-attribute Data Store. In Nine-
teenth European Conference on Computer Systems (EuroSys ’24),
April 22–25, 2024, Athens, Greece. ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/3627703.3650072

1 Introduction
Recent years have witnessed the proliferation of attribute-
rich data generated from automated sources, or “machine-
generated data” [1]. IoT devices already stream as many as
1.4 million data points per second per backing server [2–5].
Facebook’s monitoring systems used for operational metrics
like CPU, memory, and disk utilization generate around 12

*Work done while at Yale.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
EuroSys ’24, April 22–25, 2024, Athens, Greece
© 2024 Copyright held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN 979-8-4007-0437-6/24/04
https://doi.org/10.1145/3627703.3650072

million data points per second per server [6–9]; and network
traffic logs for 100Gbps links can generate as many as 160 mil-
lion data points per second at each server [10–12]. Such data
is a rich source of information, offering utility to a wide range
of monitoring, analysis, and visualization applications. How-
ever, the timeliness of such analysis is crucial; the value of
the analysis is often highest shortly after the data is ingested,
making the ability to query massive volumes of attribute-rich
data in near real-time of paramount importance.

As a concrete example, consider a taxi service that col-
lects information about rides made in a busy city like New
York [13–16]. A subset of metadata recorded for each ride
includes pickup and drop-off locations, times, trip durations,
and fares. With up to 30 million rides per day [17], careful
time-sensitive planning of car availability and fare pricing is
required, particularly in locations with high demand. For in-
stance, Uber accumulates hundreds of petabytes of analytical
data for forecasting rider demand and addressing driver-client
matching, with target data latency on the scale of minutes [14].
Facilitating this demands complex spatiotemporal analysis
of the ride data along multiple attributes simultaneously, e.g.,
tracking the number of trips with pickup and drop-off loca-
tions at popular locations at regular time intervals.

The unique characteristics of analyzing machine-generated
data impose challenging requirements on the underlying data
stores. On one hand, these systems should support low-latency,
high-throughput queries across attribute-rich data records.
These queries can be quite diverse; point queries involve fast
record insertions and lookups using a unique primary attribute,
while more complex analyses require simultaneous searches
across multiple secondary attributes. On the other hand, sup-
porting performant analysis over massive data scales requires
holding large volumes of data in memory, making minimizing
the storage overheads crucial.

Unfortunately, existing systems compromise on one or
both of these requirements. Systems that support efficient
query semantics across multi-attribute records leverage ad-
ditional multi-attribute index structures with large storage
overheads [18–24]. While such systems perform well for
small datasets, they cannot scale to larger datasets as the un-
derlying data structure easily outgrows the memory capacity
— e.g., indexes alone can consume 55% of the total memory
in real-world in-memory databases [25]. Another emerging
class of systems leverages queries on compressed in-memory
data structures [26–29] to scale to larger datasets. However,
they do so by compromising functionality, e.g., they lack sup-
port for either efficient point queries [29, 30], fine-grained
in-place updates [26–28], or multi-attribute queries [26–29].

https://doi.org/10.1145/3627703.3650072
https://doi.org/10.1145/3627703.3650072

EuroSys ’24, April 22–25, 2024, Athens, Greece Ziming Mao, Kiran Srinivasan, and Anurag Khandelwal

Maintaining multiple secondary indexes in addition to the
compressed data can support the missing functionality but
incurs additional storage overheads, which ultimately limits
performance scalability (§2).

We present TRINITY, an in-memory data store that simulta-
neously supports fast point queries and multi-attribute range
searches on a storage-efficient data representation. To achieve
this, TRINITY argues for a fundamentally new approach to
multi-attribute data representation. This is motivated by our
observation that with the drastic growth in machine-generated
data, it is increasingly infeasible to store and analyze data in
memory, even in its native form, let alone with additional in-
dexes for real-time analysis. As such, unlike prior approaches,
TRINITY natively supports rich queries on a dynamic suc-
cinct1 data structure, MDTRIE, with no additional indexes.
MDTRIE encodes different attributes of a record using a
space-filling curve [32] — specifically, a novel generalized
form of Morton code [33] — and stores them succinctly in a
trie.

Moreover, MDTRIE is self-indexed: our indexes are not
separate data structures, but instead embedded within the
same succinct trie that encodes the data. This approach effec-
tively allows us to perform multi-attribute queries directly on
a compressed data representation. We also present several op-
timizations that exploit the structure of data representation in
MDTRIE, making it far more performant and space-efficient
than prior multi-attribute indexes (§5).

We incorporate MDTRIE into TRINITY, a distributed, fault-
tolerant data store (§4). We evaluate TRINITY for three real-
world use-cases; compared to state-of-the-art systems, TRIN-
ITY supports (1) 7.2–59.6× faster multi-attribute searches,
(2) storage footprint comparable to columnar stores, and 4.8–
15.1× lower than NoSQL and OLTP databases, and (3) point
query throughput comparable to NoSQL stores and 1.7–52.5×
higher than OLTP databases and columnar stores (§5).

In summary, this paper makes three main contributions:
• Design of MDTRIE, a dynamic, succinct, self-indexed

multi-dimensional data structure that supports multi-attribute
range searches as well as efficient point queries.
• Design and implementation of TRINITY, a distributed data

store that leverages MDTRIE to store and query massive
multi-attribute datasets using a data-parallel architecture.
• Evaluation of MDTRIE and TRINITY against state-of-the-

art data structures and data stores on real-world workloads.
We note that our data representation makes some trade-offs
to achieve storage and query efficiency; specifically, TRIN-
ITY’s Morton code-based representation requires queried at-
tributes to have fixed bit-width representations. Fortunately,
this is acceptable for our target applications for machine-
generated data since they tend to work mainly with fixed-
width attributes (§5). Extending our representation to support

1Formally, if the information-theoretic lower bound of a given dataset is 𝑛
bits, then a succinct data structure can represent it in 𝑛 + 𝑜 (𝑛) bits [31].

variable-length attributes is an exciting future work (§6). The
code for TRINITY and the datasets and workloads used in our
evaluation are available at https://github.com/Trinity-
data-store/Trinity.

2 Background and Motivation
This section describes the need for storing and analyzing
multi-attribute data (§2.1), the shortcomings of existing tech-
niques in meeting this need (§2.2), and the approach that
TRINITY employs to overcome these shortcomings (§2.3).

2.1 Multi-Attribute Data Storage
Machine-generated data is typically composed of a collection
of structured records, with the records themselves composed
of multiple well-defined attributes. One of these attributes is
a unique identifier for the record — the primary key — while
the remaining attributes are secondary. This data is often
stored in NoSQL stores [34–37] or in-memory databases [38–
41], which use the primary key to support point queries
like lookups, insertions, and removals (via get(), put(), and
delete() operations, respectively). Secondary attributes, on
the other hand, are employed to support range and filter
queries, e.g., isolating all the events that may have occurred
in a specific time window for an IoT application. Increas-
ingly, applications that use such data for monitoring, analysis,
and visualization require querying multiple attributes simul-
taneously, e.g., spatiotemporal queries on vehicular data for
real-time traffic applications (§1).

We identify three key requirements for storage systems
imposed by applications operating on multi-attribute data:

• Support for low-latency multi-attribute queries (on the
order of hundreds of milliseconds [42–45]) to enable rich
monitoring, analysis, and visualization queries. For in-
stance, §5 outlines three emerging use cases where multi-
attribute queries are crucial to different applications.
• Space-efficient representation of data — ideally com-

parable to or lower than the original dataset size — to
maximize the amount of data that can be stored in memory
for low-latency queries at scale [26–29].
• Support for high-throughput point queries, i.e., record

lookups, insertions, and removals based on their primary
keys (on the order of thousands of operations per second per
core [46, 47]). These operations enable high data ingestion
rates and efficient retrieval for records of interest [2–12].

2.2 Need for TRINITY

Unfortunately, we find that existing approaches fail to meet
one or more of the requirements outlined above:

Lack of support for low-latency multi-attribute queries.
Multi-attribute queries are challenging to support efficiently;
while scan-based approaches do not scale to large datasets,
building indexes for multiple attributes incurs high storage
overheads while querying and aggregating results from multi-
ple indexes is slow. In-memory databases [38–41] typically

https://github.com/Trinity-data-store/Trinity
https://github.com/Trinity-data-store/Trinity

TRINITY: A Fast Compressed Multi-attribute Data Store EuroSys ’24, April 22–25, 2024, Athens, Greece

decompose collections of multi-attribute records into normal-
ized relational tables to reduce data redundancy and employ
joins to support multi-attribute queries. Although they are
performant for small datasets, joins can be quite inefficient
for larger datasets due to their quadratic computational com-
plexity [48]. This inefficiency is exacerbated in distributed
databases, where the joins require frequent cross-server com-
munications [49]. Additional index data structures like B-
Trees or hash-indexes can accelerate queries on secondary at-
tributes. While these indexes perform well for single-attribute
queries [50], their performance for multi-attribute queries de-
grades with the number of attributes queried simultaneously
and the volume of data being queried. In TRINITY, we tar-
get a new approach that maintains low query latencies while
significantly lowering storage overheads.

High storage overheads. The use of traditional indexes for
secondary attributes in addition to the raw data incurs poor
performance for multi-attribute queries and requires signifi-
cant additional storage. Prior work has shown that systems
that use indexes to support such queries can increase the re-
quired storage for an input dataset by as much as 8× [26].
There have also been efforts to design tree-based data struc-
tures for supporting multi-dimensional2 queries such as K-D
trees [22], R-trees [23, 51], UB-trees [21], and Qd-tree[52].
Unfortunately, these structures are not space-efficient, requir-
ing far more storage relative to the performance improvements
they offer (§5). Moreover, the storage overheads often result
in the data structure spilling over to secondary storage, which
results in further degradation in query performance.

Lack of support for high-throughput point queries. To en-
able space efficiency, a recent class of systems focuses on en-
abling queries on compressed data structures [26–29, 45]. For
example, Succinct [26] supports point queries and searches
on secondary attributes while keeping the data compressed.
Columnar stores like ClickHouse [53] support compression
on data blocks (e.g., with LZ4) and employ fast decompres-
sion during query execution. Although these approaches pro-
vide space efficiency and query efficiency for limited types
of search, they compromise either on efficient in-place point
updates [26–28, 42, 54] or on point lookups [29, 53].

2.3 The TRINITY Approach
To address the issues above, we designed TRINITY, a dis-
tributed data store that supports low-latency multi-dimensional
queries and high-throughput point queries on space-efficient
data representation. TRINITY achieves this through a new data
structure — MDTRIE. MDTRIE combines advances across
multiple data structure techniques with novel data layout and
query execution algorithms to meet the needs of applications
that leverage multi-attribute data (§3):

2We use the terms dimension and attribute interchangeably: the two are
standard terms in theory and storage communities, respectively.

Encoding attributes with Morton codes. To efficiently sup-
port range queries across multiple attributes simultaneously,
we collapse multiple attributes into a single attribute using an
encoding scheme called Morton codes [33]. The benefit of
using Morton codes is twofold. First, they preserve spatial
locality, i.e., contiguity in ordering across the multiple com-
ponent attributes even when translated to a single attribute.
In other words, points closer in multi-dimensional space are
mapped to numerically closer Morton codes. This readily per-
mits efficient adaptations of range query algorithms designed
for single attributes to multiple attributes. Second, Morton
codes can encode any attribute with a fixed-width binary rep-
resentation, making them applicable to data types seen in
machine-generated data sources. Although traditional Mor-
ton codes require all attributes to have the same width, we
provide a novel generalization for Morton codes to support
attributes of different widths (§3.2). While there are other
space-filling curves with similar properties [55], MDTRIE
employs Morton encoding since it permits efficient pruning
of multi-dimensional search spaces.

Encoding records in a succinct trie. A naïve approach to
support range queries on the Morton-encoded values is to
store them in a tree-based data structure [30, 56, 57], e.g.,
represent each bit in the Morton-encoded value as one level
in the tree. However, trees typically incur large storage over-
heads due to their heavy use of pointers — even more so when
applied naively to Morton-encoded data, making them imprac-
tical for large datasets. Our second contribution is to leverage
succinct trie structures [58–60], which exploit prefix redun-
dancy across data points along with bit vector representations
of tries to reduce the storage overheads significantly. The
use of such tries to store Morton codes, however, introduces
subtle issues for supporting multi-dimensional range queries,
point queries on primary keys, and maintaining storage effi-
ciency, especially when the number of attributes in the dataset
grows large; to the best of our knowledge, none of the prior
approaches [60, 61] address these issues. We make several
algorithmic and data structure innovations to improve query
execution and storage efficiency in our succinct MDTRIE.

Self-indexing for point queries. Since Morton codes in-
terleave bits of multiple attributes of the original record, it
makes in-place support for point insertions or lookups based
on the primary key more challenging. This is further exac-
erbated when these values are compressed in a succinct trie
representation, where nodes in MDTRIE cannot be directly
referenced with pointers. Using additional indexes to sup-
port point queries adds to the storage overhead and requires
accessing and updating additional data structures, incurring
performance overheads. Instead, MDTRIE embeds metadata
within the trie structure itself and reconstructs data points
through hardware-accelerated bitwise traversals up the trie to
support point queries efficiently with minimal storage over-
heads. Interestingly, this also ensures that MDTRIE remains a

EuroSys ’24, April 22–25, 2024, Athens, Greece Ziming Mao, Kiran Srinivasan, and Anurag Khandelwal

self-index — a data structure that combines both the raw data
and index within the same succinct representation.

We incorporate MDTRIE into TRINITY’s distributed sys-
tem architecture by using well-studied sharding techniques
(§4). We also incorporate techniques for efficient distributed
range query execution and providing persistence guarantees.

3 MDTRIE: Encoding Multi-Attribute Data
We now describe MDTRIE data structure for storing and
querying multi-attribute data. We first outline prior techniques
that MDTRIE builds on and their shortcomings in meeting
TRINITY’s goals (§3.1). We then describe salient compo-
nents of MDTRIE and how they systematically overcome
these shortcomings, including a generalization of Morton
encoding to variable bit-width attributes (§3.2), a novel multi-
dimensional range search algorithm (§3.3) and efficient sup-
port for point queries (§3.4).

3.1 Building Blocks
MDTRIE builds on a rich body of theoretical work on data
structure design; we summarize relevant techniques here.

Morton code is an encoding scheme used to map 𝑛 dimen-
sional data to a single dimension while preserving the spa-
tial locality of the encoded data points. This is achieved by
ordering the data along a Z-order space-filling curve in 𝑛 di-
mensions. Figure 1(a) shows an example of 2D space, where
points with integer coordinates can be represented on a square
grid: 𝑥 and 𝑦 correspond to column and row indices, respec-
tively. The Morton code (4-bit code in each cell) for a point
(depicted as cells) is obtained by interleaving the bits of the 𝑦
and 𝑥 dimensions, e.g., the Morton code for 𝑦 = 1, 𝑥 = 2, or
01, 10 in binary, is 6 (0110 in binary). The Z-order space-filling
curve (gray line) tracks the numerical order of Morton code
values across points; it possesses a characteristic recursive
Z-shape. This approach can be generalized to 𝑛 dimensions
by interleaving each of their bits.

Reducing the 𝑛-dimensional data to a single dimension
using Morton codes permits using traditional tree structures
to support efficient range searches across multiple dimensions
simultaneously. For instance, the range 2 ≤ 𝑥 ≤ 3, 0 ≤ 𝑦 ≤ 3
maps to two contiguous Morton code ranges (4–7 and 12–
15), with the codes preserving much of the spatial locality.
Algorithms for identifying these contiguous Morton codes
corresponding to the multi-dimensional range queries [62]
have been adapted to tree-based data structures [21, 30] for
fast searches. Unfortunately, current approaches suffer from
two main issues. First, these data structures either do not ex-
ploit the redundancy in the encoded data, aggressively employ
pointers to support efficient traversals, or both. Consequently,
such approaches are quite space-inefficient. Second, although
these data structures are optimized for multi-dimensional
range queries, they often cannot efficiently support queries
on a small subset of attributes or point queries on primary

keys; supporting point queries requires additional indexes,
exacerbating their space inefficiency.

Succinct tries. Although tries can exploit redundancy across
key prefixes to reduce storage overhead in the tree-based data
structures outlined above, they still aggressively use per-node
pointers to facilitate efficient traversals, limiting their space
efficiency. Succinct tries [60] permit overcoming this hurdle:
although a general tree of 𝑛 nodes represented in pointer form
requires 𝑂 (𝑛 log𝑛) bits, succinct representations typically
require just 2𝑛 + 𝑜 (𝑛) bits [31]. At a high level, succinct
trie representations reduce storage overheads through a bit-
encoded representation for nodes and edges rather than using
pointers to link nodes. More concretely, a node of degree 𝑑 is
represented as a 𝑑-bit vector, each bit indicating whether the
corresponding child exists. To avoid storing pointers to child
nodes, the bit vectors for different nodes are laid out one after
the other in a well-defined order, e.g., depth-first ordering
(Figure 1(b)). While there are alternate layouts (§ 6), we use
depth-first ordering for its cache- and update-efficiency [61].

𝑘2-trie. Although much of the earlier work has focused on
single-dimensional tries, recent work [61] explores the design
of a dynamic succinct trie of Morton codes to represent two-
dimensional data. Their succinct representation, 𝑘2-trie is a 4-
ary tree, where each node has four possible children encoded
as four bits; node 0 in Figure 1(b) is encoded as 1001 as
only its first and fourth children exist. Each edge to a child
node tracks two bits of Morton code, one per dimension
(00, 01, 10, and 11). Put together, 𝑘2-trie tracks a contiguous
sequence of nodes in depth-first order in a bit vector. The path
from the root to a leaf represents the full Morton code of the
corresponding data point. In Figure 1(b), the Morton code
for leaf 𝐿1 (000110) is the concatenation of Morton code bits
tracked by the edges (00, 01, 10) along the path. The authors
suggest 𝑘2-trie can be generalized to 𝑛 dimensions by letting
each edge track 𝑛 bits of Morton code, one bit per dimension.
This would require storing 2𝑛 bits per node to track the 2𝑛
possible values that 𝑛 bits of Morton code can assume.

Unfortunately, 𝑘2-trie fails to meet several of our require-
ments. First, 𝑘2-trie only supports insertion and checking for
a point’s existence, with no support for either multi-attribute
range queries or point queries on primary keys. Second, 𝑘2-
trie’s storage grows exponentially with more attributes since
it must encode each node using 2𝑛 bits, where 𝑛 is the number
of dimensions — a single 10-dimensional data point with
32-bit attributes would require 4KB (210 × 32 bits) of stor-
age! Third, 𝑘2-trie requires all attributes to have the same
bit width, limiting its applicability to datasets with attributes
of different types. We use 𝑘2-trie as a starting point in our
MDTRIE design and address its shortcomings, as described
in the following sub-sections.

TRINITY: A Fast Compressed Multi-attribute Data Store EuroSys ’24, April 22–25, 2024, Athens, Greece

0 (00) 1 (01) 2 (10) 3 (11)

0 (00)

1 (01)

2 (10)

3 (11)

x:
y:

0
(0000)

1
(0001)

4
(0100)

5
(0101)

2
(0010)

3
(0011)

6
(0110)

7
(0111)

8
(1000)

9
(1001)

12
(1100)

13
(1101)

10
(1010)

11
(1011)

14
(1110)

15
(1111)

(a) Morton code for 2𝑑 .

1001 1100 0010 0100 1010
 0 1 2 3 4

0
1

2

3

4

Bit Vector
L1

(b) 𝑘2-trie.

1001 1100 0011 0010 0010 1010
 0 1 2 3 4 5

Treeblock 2

Treeblock 10
1

2
3

4

5

Populated Node
Unpopulated Node
Frontier Node

Bit Vector:
Node Index:
Frontier Node Array: [(2, 0x8f03)]

0x7510

0x8f03

(c) MDTRIE.

Fig. 1. Using Morton codes in 𝑘2-trie and MDTRIE (a) Morton code (§3.1, values in cells) is a bitwise interleaving of the 𝑦 (red) and 𝑥 (blue)
values. Z-order curve (gray line) tracks contiguous Morton codes; (b) Nodes in 𝑘2-trie (§3.1) use 4 bits to encode their children and are stored
in depth-first order in a bit vector. The four edges of each node track two bits of Morton code (00, 01, 10, 11). Labels on nodes identify their
node index in depth-first order; (c) MDTRIE (§3.2) partitions the trie into treeblocks, each tracking a contiguous chunk of nodes in depth-first
order. The frontier node array in each treeblock tracks (node index, treeblock pointer) tuples; pointer addresses are shortened for illustration.

Coordinates

Binary

Code

Original
Morton Code

Generalized
Morton Code

(7, 1, 2) (7, 1, 2)

(111, 001, 010) (111, 1, 10)

100 101 110 111 10 1

(a) Original vs. Generalized Morton encoding

10000001 0100 01 0010 01

 0 1 2 3 4

Treeblock 10

1

2

3

4

Populated Node
Unpopulated Node

(1,0,1) (7,1,2)
10001000 10000000 00000100 00000100 00000010 Original:

Generalized:

Node Index:
10000001 01 1 10 1Collapsed:

(b) MDTRIE w/ Generalized Morton encoding + Collapsed nodes

d1 d2 d3 d1 d2 d3

R1

R2

R3

R1

R2

R3

(c) Staggered Morton encoding

Fig. 2. Generalizing Morton codes. (a) Contrasting Morton encoding with padding against Generalized Morton encoding; (b) MDTRIE

storage representation for original, Generalized Morton encoding and with collapsed node optimization for points (1,0,1) and (7,1,2).
Generalized Morton encoding reduces the storage required for the treeblock bit vector from 40 to 20 bits, while collapsed nodes further reduce
the storage to 18 bits; (c) Staggered Morton encoding for three attributes of different widths. See §3.2 for details.

3.2 MDTRIE Layout

Inserting a new data point in a succinct trie (e.g. 𝑘2-trie) re-
quires moving many bits to make space for the new nodes
in the bit vector. To scale to larger datasets, MDTRIE (Fig-
ure 1(c)) partitions the trie into treeblocks, with each treeblock
tracking a contiguous chunk of nodes in depth-first order in
a bit vector. MDTRIE bounds the cost of bit shifts within
a treeblock by ensuring that no treeblock has more than a
certain number of nodes (512 in our realization). When this
threshold is exceeded, it creates a new treeblock and adds a
frontier node, or a pointer to a new treeblock, (e.g., node 2
in Figure 1(c)) in the parent treeblock to point to it. The tree-
block tracks these pointers in a frontier node array comprising
tuples of frontier node index (i.e., its position in the treeblock
in depth-first order) and the corresponding treeblock pointer.

We now outline the key components of MDTRIE layout
that allow it to scale to a large number of dimensions.

Generalizing Morton Encoding. Real-world datasets con-
tain multiple attributes with different bit widths, depending
on their data types. Traditional Morton encoding requires all
dimensions to have the same bit-width. A naive approach of

padding every dimension to the same width can make the trie
quite space-inefficient, especially as the number of dimen-
sions grows large. As an example, consider three attributes
with bit-widths of 3, 1, and 2 bits, respectively, encoded using
a traditional 3D Morton (Figure 2(a)). If we pad the coor-
dinates along each dimension to 3 bits, we would need to
store 8 bits per node for every level in the trie. In particular,
the padded zero bits in the second and third attributes only
generate Morton codes with redundant zero bits.

Instead, we propose a generalization of Morton codes for
dimensions of different widths that avoids padding: it simply
skips a dimension’s bits if all its bits are exhausted. Figure 2(a)
shows this approach. In the first interleaving, we extract bits
from all three dimensions; in the second interleaving, we
extract bits from only the first and third dimensions; and in the
third interleaving, we extract only the remaining bit from the
first dimension. This approach significantly improves space
efficiency for our MDTRIE as shown in Figure 2(b). The first
level of MDTRIE in the above example still requires 8 bits per
node, but the second and third levels only require 4 and 2 bits
per node, respectively. Note that because MDTRIE nodes at
different levels track different numbers of dimensions under

EuroSys ’24, April 22–25, 2024, Athens, Greece Ziming Mao, Kiran Srinivasan, and Anurag Khandelwal

our generalized Morton encoding, we refer to the dimensions
used at any level of the trie as active dimensions.

We introduce two optimizations to the generalized Morton
encoding to further reduce the storage overheads for MDTRIE:
collapsed nodes and staggered Morton encoding.

Collapsed nodes. During our preliminary analysis of storage
overheads, we found that most MDTRIE nodes only had a
single child, especially for datasets with many attributes. Intu-
itively, this is because the Morton code-space grows exponen-
tially with additional dimensions, while the actual data points
in the dataset occupy only a small fraction of the Morton code-
space, i.e., real-world datasets are sparse. In MDTRIE, if a
node with 𝑛 active dimensions has only a single child, storing
2𝑛 bits to track all possible 𝑛-bit Morton code sequences can
be quite wasteful as 𝑛 grows.

As an optimization, we collapse the representation for such
nodes from 2𝑛 bits to 𝑛 bits, directly encoding the Morton
code representation of the valid child by value. Whenever a
new child needs to be added, we simply expand the node’s
representation back to 2𝑛 bits. We store a separate bit vector
per treeblock to track whether or not a node is collapsed.

To illustrate, consider an example where a node originally
in its collapsed node representation directly stores the 3-bit
Morton code representation of the child (010). When a new
child (101) is to be added, the node is first expanded to 8 bits
(00100000), with a bit set at child position 2 for the original
child (010) and a new bit is set for the new child, yielding the
final Morton code 00100100. Figure 2(b) shows the reduction
in storage for a complete treeblock using collapsed nodes.

Staggered encoding. An interesting corollary to our Morton
code generalization is that we do not need to start interleaving
bits for all dimensions from their first bit; Figure 2(c) shows
that it is possible to delay interleaving bits along selected di-
mensions (e.g., 𝑑1). In our trie representation, we do not even
need to prefix the delayed dimensions with zeros; instead, we
can simply calculate the set of active dimensions at every trie
level (e.g., {𝑑2, 𝑑3} at level 1) during initialization.

Curiously, such staggering can actually improve storage
footprint, depending on the dataset and its attribute widths. To
see why, consider the example in Figure 2(c). Let a region 𝑅

be a contiguous set of levels with the same number of active
dimensions and 𝑤𝑅 be the number of active dimensions in 𝑅.
By staggering the first dimension to the end, we find that 𝑤𝑅1

decreases from 3 to 2, but 𝑤𝑅3 increases from 1 to 2. Because
the number of bits needed per node is 2𝑤 , balancing the num-
ber of active dimensions across different levels can improve
storage efficiency relative to a more skewed distribution. Our
approach to realizing this insight adapts a greedy bin-packing
algorithm to minimize the maximum number of active dimen-
sions in any region. We find that datasets with a wide range
of attribute widths benefit most from this optimization since
there is more room to stagger attribute bits to minimize the
number of active dimensions (§5.2).

Treeblock 10

1

Populated Node
Unpopulated Node

2In Search Range
[0,3]

[4,7] [8,11]

[12,15]00
01 10

11

Fig. 3. Two-dimensional range search. See §3.3 for details.

3.3 Multi-dimensional Range Query
While Morton codes simplify multi-dimensional range queries
by mapping them to range queries on a single dimension,
subtle issues still remain. Despite their tendency to preserve
spatial locality, the Z-order curves generated by Morton codes
can still have discontinuities within a multi-dimensional search
range. For example, the 2D search range 2 ≤ 𝑥 ≤ 3, 0 ≤ 𝑦 ≤ 3
in Figure 1(a) has one discontinuity at Morton code 7, af-
ter which it jumps to Morton code 12. Using a naive range
lookup on the Morton codes may require visiting nodes in
the MDTRIE corresponding to irrelevant Morton code ranges,
e.g., 8–11. Even when the Morton codes for a search range
are continuous, there may not be any valid points in the range,
e.g., if the range 4–7 does not have any actual points in it,
visiting the corresponding node in MDTRIE would be waste-
ful. Both issues are exacerbated with more dimensions as
the search space grows much sparser, incurring significant
inefficiencies for multi-dimensional range queries.

Fortunately, the succinct node representation in MDTRIE
offers a means to sidestep both inefficiencies. Since MDTRIE
tracks how many dimensions𝑛 are active and which of the pos-
sible 2𝑛 following 𝑛-bit Morton code prefixes (i.e., children)
are valid at each node, we can quickly eliminate irrelevant
and empty Morton code ranges during a search. Revisiting
the above example, the MDTRIE root node would track four
children corresponding to Morton code bits 00, 01, 10 and
11 (Figure 3). Since the search query corresponds to Mor-
ton code ranges 4–7 and 12–15, Morton code prefixes 00 and
10 (corresponding to Morton code ranges 0–3 and 8–11, re-
spectively) are irrelevant for our range search query, so we
can simply skip traversing the corresponding sub-trees with
simple bitwise comparisons. Also, because the Morton code
prefix 01 (corresponding to Morton code range 4–7) does not
contain any points in the trie (since the second bit of 1001
stored at node 0 is 0), we can eliminate it easily through a sim-
ple bitwise comparison as well. This leaves only the sub-tree
under node 2 (prefix 11), where the process can be repeated
recursively. Note that the efficiency of the algorithm stems
from aggressive pruning of traversed nodes based on both the
data distribution (i.e., skipping sub-trees that do not contain
any data points) and the search space distribution itself (i.e.,
skipping sub-trees that do not intersect with the search space).

Algorithm 1 shows our range search algorithm, performed
via the recursive SEARCH-LEVEL procedure. Its inputs are the
search range 𝑆 identified by the start (𝑃𝑠) and end (𝑃𝑒) points,
the current level 𝑙 of MDTRIE being traversed, and the current

TRINITY: A Fast Compressed Multi-attribute Data Store EuroSys ’24, April 22–25, 2024, Athens, Greece

Algorithm 1 Multi-dimensional Range Search
1: procedure SEARCH-LEVEL(𝑆, 𝑙, 𝑖) ⊲ Search at node index 𝑖 at level 𝑙 of

MDTRIE for the search range 𝑆 = (𝑃𝑠 , 𝑃𝑒)
2: if level 𝑙 is at the leaf level then
3: Add 𝑖’s primary keys to search result
4: else
5: (𝑠, 𝑒) ←Morton bits for the current level in (𝑃𝑠 , 𝑃𝑒)
6: childIdx← 𝑠

7: while childIdx ≤ 𝑒 do
8: if childIdx is populated ∧ childIdx ∈ 𝑆 then
9: 𝑆 ′ ← Search range for sub-tree at childIdx

10: SEARCH-LEVEL(𝑆 ′, 𝑙 + 1, childIdx)
11: end if
12: childIdx← next set child bit position at node 𝑖
13: end while
14: end if
15: end procedure

node index 𝑖; both 𝑙 and 𝑖 are initialized to zero. If SEARCH-
LEVEL reaches a leaf, we add the corresponding point to our
search result. Otherwise, we compute the start and end Mor-
ton codes 𝑠 and 𝑒 from 𝑃𝑠 and 𝑃𝑒 for the current level 𝑙 . We
then iterate over valid and non-empty Morton codes between
𝑠 and 𝑒, as outlined in the example in Figure 3. In practice, this
can be sped up significantly by setting childIdx to the next set
bit position in a single bitwise operation rather than checking
every bit between 𝑠 and 𝑒. If we find a Morton code matching
a child that contains points and is within [𝑠, 𝑒], we update the
current node index 𝑖 to the corresponding child node index.
We also update the search range 𝑆 every time we descend
down a sub-tree (i.e., at level 𝑙 + 1) since the Morton code
prefix for the path traversed so far can be eliminated from the
search. We then recursively call SEARCH-LEVEL at level 𝑙 + 1
with the updated parameters. Once the recursion completes,
we move on to the next valid, non-empty child node at level
𝑙 . As noted above, we aggressively leverage bitwise instruc-
tions [63] like __builtin_ctzll, __builtin_popcountll and
bitmasks to accelerate range search and trie traversal.

3.4 Point Queries with Self-indexing
To the best of our knowledge, no prior multi-dimensional
data structure [21, 30, 61] natively supports point queries
— namely, lookups, insertions, and removals of points via a
unique primary key. There are two main ways such queries
could still be supported on such data structures: using an
additional index mapping primary keys to the data points or
by including the primary key as an attribute within each data
point. Unfortunately, while the former is space-inefficient,
the latter requires expensive range searches on the primary
key attribute to locate the associated data point. The latter
also reduces the spatial locality of the encoded data since
primary keys are typically unique identifiers not correlated
with secondary attributes.

We support point queries on MDTRIE by embedding a
primary key index within the trie structure, ensuring space
efficiency. There are two key components to our approach:
storing the primary keys themselves and maintaining addi-
tional metadata to permit retrieval, insertion, and removal of
a data point given its primary key.

Storing primary keys. Since a leaf node completely identi-
fies a data point, we maintain an array of primary keys per leaf
node in each treeblock; the array can store multiple primary
keys for the same data point to handle duplicates. At the tree-
block granularity, we store pointers to these per-leaf arrays
in another array in the order the corresponding leaves appear
in the treeblock. We employ two optimizations to reduce the
storage footprint of this nested array. First, if a leaf has a
single primary key, we inline its primary key in the top-level
array instead of nesting an array with a single key. Second,
for a leaf with multiple primary keys, the corresponding array
is sorted and compressed using delta-encoding [64].

Retrievals. We support lookups on primary keys by first lo-
cating the leaf corresponding to the primary key and then
reconstructing the data point (i.e., its Morton code) from
leaf-to-root. Since multiple nodes (including leaf nodes) are
encoded together in a single treeblock bit vector for space effi-
ciency, a node’s offset in the bit vector can frequently change
over time as new nodes are inserted. This makes it difficult to
identify a leaf node uniquely using its ever-changing offset
within the corresponding bit vector. This also makes main-
taining a primary key to leaf node mapping infeasible since,
unlike pointer-based tries, nodes in MDTRIE cannot be di-
rectly referenced with pointers. Instead, we store a hash-based
mapping from primary keys to the treeblock that contains the
corresponding leaf node. We compress the treeblock point-
ers in our mapping, exploiting the observation that there are
only a small number of treeblocks in MDTRIE— far fewer
than the number of leaf nodes, permitting the use of a small
number of bits to represent these pointers. Intuitively, this
also results in a coarse treeblock-level mapping from primary
keys to treeblocks, requiring a dynamic reconstruction of the
precise location of the leaf in the treeblock. We locate the
corresponding leaf node within the treeblock via traversals
through the treeblock (accelerated using bitwise instructions).
To reconstruct the data point, we simply traverse up the tree-
block from the leaf to the root. Reconstructing them across
multiple treeblocks requires storing two pieces of metadata at
each treeblock 𝑡 : a reverse pointer to 𝑡’s parent treeblock 𝑝𝑡
and the frontier node index of 𝑡 in 𝑝𝑡 so that the traversal can
continue from the correct position in 𝑝𝑡 .

Figure 4 illustrates how point lookups proceed using a con-
crete example. Given a primary key, we first find the treeblock
that stores the corresponding leaf by using the primary key
to treeblock pointer mapping (1○). We then start at the root
of that treeblock (node 0 in treeblock 2) and traverse nodes
in the treeblock in depth-first order (node 0→ 1→ 2→ 3),

EuroSys ’24, April 22–25, 2024, Athens, Greece Ziming Mao, Kiran Srinivasan, and Anurag Khandelwal

Treeblock 20

2

Populated Node
Unpopulated Node

Primary Key Treeblock Ptr Treeblock 1
①

①

1

3

4

5

0

②

②

②
Primary Key Array

③

④

Frontier Node

⑤

K1 [K2,K4] K3

[K1, [K2,K4], K3]

Fig. 4. Point queries in MDTRIE. See §3.4 for details.

API Description
t = addTable(schema) Initialize a table with given schema.
s = t.search(𝑃𝑠,𝑃𝑒) Multi-attribute range search.
r = t.get(key) Lookup record by primary key.
t.insert(key,r) Insert new record given primary key.
t.remove(key) Remove record given primary key.

Table 1. TRINITY API. See §4.1 for details.

tracking the trie path to the current node along the way until
we reach a leaf node (2○). At each leaf node, we search for the
primary key in the primary key array. If found, we terminate
our traversal and note the Morton code for the trie path until
that leaf (3○). The treeblock may have been a frontier node, so
we may still need to find the point’s remaining Morton code
prefix by traversing further up the trie. That is, we follow the
treeblock’s parent pointer and its frontier node index within
the parent (4○), traversing up MDTRIE and reconstructing the
Morton code of the path until we reach the root node (5○).

Insertions and Removals. Inserting new points in MDTRIE
has two components: inserting the Morton encoding for the
data point and updating the metadata associated with the
primary key index. The former requires traversing down
MDTRIE until we hit a node where a new child must be
inserted, then shifting bits in the treeblock to make room for
the children nodes in depth-first order, creating frontier nodes
as necessary. For the latter, we store parent pointers with fron-
tier node indexes whenever a new frontier node is created.
Also, at the leaf node, we insert the new primary key into the
corresponding primary key array and add a corresponding
entry to the primary key to treeblock mapping.

To remove a data point for a given primary key, we first
locate its leaf node (similar to insertion) and then remove the
primary key from the corresponding primary key array in the
treeblock. If the removed data point is the last one associated
with the leaf node, MDTRIE clears the corresponding bit in
its parent node. If the parent node has no more children, it is
removed, and the process is recursively repeated up the trie.

4 TRINITY: Design & Implementation
We now describe salient features of TRINITY’s interface
(§4.1) and system implementation (§4.2).

4.1 System Interface
TRINITY API (Table 1) is similar to NoSQL stores. A table
abstracts data stored across a distributed (sharded) MDTRIE,
with one unique aspect: it supports efficient multi-attribute
range searches (§3). Towards supporting a flexible schema,
our generalized Morton code (§3.2) can encode any attribute
with a fixed-width binary representation. Supporting range
queries additionally requires the attribute’s binary representa-
tion to be order-preserving, e.g., a date converted to binary
POSIX timestamp preserves order across attribute values,
but a binary-encoded DDMMYY representation does not. TRIN-
ITY can still support a wide range of data types since most
(integers, timestamps, fixed-length strings, etc.) have straight-
forward order-preserving fixed-width binary representations.
TRINITY requires additional processing to encode variable-
length strings and high-precision floating point numbers, e.g.,
by rounding values to a fixed number of fractional places
for a fixed-width representation. We discuss future work on
encoding variable-length data types in §6.

4.2 System Implementation
TRINITY is implemented in 4.4𝑘 lines of C++ code as a space-
efficient in-memory data store for real-time multi-attribute
queries. Similar to prior storage systems [34, 35, 47, 65],
TRINITY’s architecture is quite straightforward, with two key
components: coordinator (§4.2.1) and storage servers (§4.2.2).
At a high level, the storage servers store and serve queries on
multiple MDTRIE shards (potentially from multiple tables).
The coordinator tracks how MDTRIE shards are placed across
the servers and tracks their health.

4.2.1 Coordinator performs two main tasks. First, TRIN-
ITY partitions the data for each table across multiple MDTRIE
shards; the coordinator tracks the storage servers in TRIN-
ITY and the identity of the MDTRIE shards that they manage
in a (TableID, HashBucket) to (ServerID, ShardID) mapping.
When a client first initializes a table with a fixed schema, they
contact the coordinator, which in turn allocates a fixed num-
ber of MDTRIE shards across storage servers for the table.
To perform other operations on the table, clients obtain this
mapping from the coordinator, cache it, and interact directly
with the storage servers. If the mapping changes and the client
contacts an incorrect storage server, the server asks the client
to refresh its mapping from the coordinator. Second, the coor-
dinator tracks the health of storage servers: the coordinator
monitors if servers are alive using heartbeat messages. When
a server fails, the coordinator initializes a replacement storage
server using prior checkpoints and write-ahead logs (§4.2.2).

TRINITY scales coordinators by partitioning the table-to-
shard mappings across multiple machines. In practice, we
find that a single machine suffices as the amount of metadata
storage and processing for even hundreds of storage servers
is nominal.

TRINITY: A Fast Compressed Multi-attribute Data Store EuroSys ’24, April 22–25, 2024, Athens, Greece

Data partitioning. TRINITY partitions data across MDTRIE
shards based on the hashes of their primary key. Despite its
simplicity, hash-based partitioning works well for MDTRIE
in practice – search (§3.3) terminates early if a shard does
not contain relevant data points, and such shards can then
serve other queries. More shards lead to a minimal increase in
shard metadata but generally faster search queries and higher
lookup throughput due to increased parallelism. It is possible
for value-based partitioning (e.g., by partitioning the multi-
dimensional value space itself [66]) to reduce the number of
shards contacted per search query, permitting higher through-
put. However, spreading the query over fewer shards would
reduce per-query parallelism and lead to potentially longer
search latencies. In TRINITY, we opted for lower search la-
tency over higher search throughput since all our evaluated
real-world search workloads are latency-bound (§5).

4.2.2 Storage Servers store MDTRIE shards and support:

Query execution. Each shard has an associated query han-
dler process, which accepts and executes client queries on the
shard. For point queries, the client issues a request to the query
handler for the shard containing the relevant primary key. For
multi-attribute searches, the client issues the request to shards
that belong to the queried MDTRIE and the corresponding
query handlers execute the search in parallel. The query re-
sults are streamed back to the client, which aggregates them
before returning them to the user. This is similar to query
execution in prior search-based systems [26, 27, 36] since it
enables high throughput for point queries while minimizing
the latency for range queries via parallel execution.

Concurrency. TRINITY supports concurrency for its queries
with atomicity guarantees by using read-write locks at tree-
block granularity, rather than at node or shard granularity.
Since nodes are encoded as bits, maintaining locks at node
granularity would incur exorbitant storage overheads. On the
other extreme, one lock per shard introduces too much con-
tention when multiple queries contact the same shard. We
empirically found treeblock granularity locks to offer a sweet
spot in minimizing both storage and contention.

Persistence. Similar to other in-memory data stores [26,
39, 47, 65], TRINITY provides persistence by maintaining
a bounded write-ahead log per shard, where every insert()
and remove() request to a MDTRIE shard is first logged to
persistent storage before being applied in-memory. TRINITY
also periodically checkpoints the in-memory MDTRIE by se-
rializing it to persistent storage, truncating the write-ahead
log after a successful checkpoint for storage efficiency. To re-
cover the in-memory MDTRIE, we reload the last checkpoint
and sequentially apply all operations in the write-ahead log.

Sizing MDTRIE treeblocks. Treeblock size, measured in
terms of the maximum number of nodes allowed in a MDTRIE
treeblock, is an important parameter at TRINITY storage

servers since it impacts both insertion performance and meta-
data overhead. In particular, larger treeblocks reduce the
amount of per-treeblock metadata that must be maintained at
the storage servers. At the same time, with larger treeblocks,
inserting new data points (§3.4) requires shifting more bits
in the treeblock’s bitvector representation to make room for
the new nodes. Our empirical analysis of real-world datasets
(§5) shows that insertion and lookup latency increase slightly
with larger treeblocks while the metadata overhead decreases.
We use a treeblock capacity of 512 nodes by default since it
offers a reasonable tradeoff between performance and storage
overheads in practice.

Enabling large data dimensionality. Compared to 𝑘2-trie,
TRINITY can encode a much larger number of dimensions
with a much smaller footprint. A naive generalization of 𝑘2-
trie to 𝑑 dimensions requires 2𝑑 bits for every node. As we
saw in §3, MDTRIE representation significantly reduces stor-
age footprint for 𝑑-dimensional data in two key ways. First,
Generalized Morton encoding and Staggered Morton encod-
ing (§3.2) reduce the number of active dimensions (𝑑 ′) to be
much smaller than 𝑑 in practice. Second, the collapsed node
optimization permits the majority of the MdTrie nodes to use
𝑑 ′ bits rather than 2𝑑 ′ bits.

Even with these optimizations, an uncompressed MDTRIE
node may still require 2𝑑 bits in the worst case. As the num-
ber of dimensions grows large (e.g. > 25), this can cause
MDTRIE’s storage footprint and performance to increase non-
linearly. While such high dimensionality for queried attributes
is uncommon in practice (§5), TRINITY combats non-linear
scaling at a larger number of dimensions by slicing dimen-
sions across multiple MDTRIE instances, with each MDTRIE
slice encoding dimensions that are often queried together.
These slices handle both point queries and range queries in
parallel; while point queries simply require combining the
extracted dimensions, range queries require performing a
set intersection across the sets of records returned by each
MDTRIE slice. We show in §5.2 that the storage overhead
and latency increase linearly with the number of dimensions
(up to 128).

5 Evaluation
We now evaluate TRINITY to show that it meets the goals for
applications that leverage multi-attribute datasets (§2).

Datasets and workloads. Table 2 summarizes datasets and
multi-attribute queries used in our experiments.

• Real-time business analytics. We use the synthetic TPC-H
dataset [67] with 1 billion records. We coalesce its lineitem
and orders tables on the orderkey attribute so that each
record has 9 attributes. Since the TPC-H benchmark lacks
multi-attribute queries, we generate 1𝑘 synthetic range
queries over multiple attributes, similar to prior work [42].
• Statistical analysis of GitHub repositories. We analyze

the GitHub Events dataset [68] comprising user events on

EuroSys ’24, April 22–25, 2024, Athens, Greece Ziming Mao, Kiran Srinivasan, and Anurag Khandelwal

Dataset Query Templates
TPC-H
(1B records, 9 attr.)

Synthetic range queries over shipdate, receiptdate, quantity, discount, orderkey and supplierkey attributes
with 0.1% query selectivity.

GitHub Events
(828M records, 10 attr.)

GQ1: Repositories with # stars ≥ 𝑔1 and # forks ≥ 𝑔2.
GQ2: Repositories with total # events ≤ 𝑔3, # issues ≥ 𝑔4, and # stars ≥ 𝑔5.
GQ3: Repositories with earliest modified date ≤ 𝑔6, latest modified data ≥ 𝑔7, and # stars ≥ 𝑔8
GQ4: Repositories with earliest modified date in range (𝑔9, 𝑔10), latest modified date in range (𝑔11, 𝑔12).

NYC Taxi
(675M records, 15 attr.)

NQ1: Trips with distance ≤ 𝑛1km and fare amount between $𝑛2 and $𝑛3.
NQ2: Trips with pick-up and drop-off years between 𝑛4 and 𝑛5.
NQ3: Trips with pick-up dates earlier than 𝑛6 and with 𝑛7 passenger.
NQ4: Trips with pickup locations between latitudes (𝑛8, 𝑛9) and longitudes (𝑛10, 𝑛11).

Table 2. Datasets and query templates. We generate 1𝑘 multi-attribute queries for the TPC-H dataset based on prior work [42]. For GitHub
Events and NYC Taxi datasets, we use real-world query templates to generate 1𝑘 queries with 0.1% average query selectivity.

103 104 105
Latency (ms)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 q

ue
rie

s (
CD

F)

Trinity
ClickHouse

Aerospike
TimescaleDB

(a) Business Analytics

103 104
Latency (ms)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 q

ue
rie

s (
CD

F)

Trinity
ClickHouse

Aerospike
TimescaleDB

(b) GitHub Repository Analytics

103 104 105
Latency (ms)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 q

ue
rie

s (
CD

F)

Trinity
ClickHouse

Aerospike
TimescaleDB

(c) Taxi Dataset Analysis

TPC-H GitHub
Events

NYC
Taxi

103

105

Th
ro

ug
hp

ut
 (k

pt
s/

se
c)

Trinity
ClickHouse

Aerospike
TimescaleDB

(d) Search Throughput

Fig. 5. Performance for multi-attribute search (§5.1). Note that y-axis is in log-scale for (d).

GitHub. We group the events by repository, resulting in
828 million entries, each with 10 attributes. Our queries are
adapted from real-world use cases outlined in [68].
• Interactive taxi traffic analytics. We use the NYC Taxi

dataset [13] with logs of taxi trips in New York City. After
pruning attributes with missing values, the dataset had 675
million records with 15 attributes each. We adapt multi-
attribute queries from several real-world sources [69–71].

The adapted real-world templates correspond to range queries
over multiple attributes with widely varying data distributions;
we generate the template variable values (𝑔1–𝑔12 for GitHub
Events, 𝑛1–𝑛11 for NYC Taxi) to ensure the average query
selectivity is 0.1%. We generate 1𝑘 queries for each use-case
with an equal number of queries per template to nullify the
effects of query selectivity on query performance. For point
queries, we generate accesses across primary keys using a
Zipf distribution representative of real-world workloads [72].
We report throughput for search and point queries as the
number of points retrieved or inserted per second.

Compared Approaches. We benchmark TRINITY against
three classes of systems, and MDTRIE against state-of-the-art
data structures. For systems (§5.1), we compare TRINITY
against Aerospike [47], a representative in-memory NoSQL
data store; TimescaleDB [46], an OLTP time-series database
based on PostgreSQL for fast analytics; and ClickHouse [53],
a column-oriented OLAP database. We create indexes on
queried attributes for systems that support them. For data
structures (§5.2), we compare MDTRIE against R*-Tree [73],

a variant of R-Tree for indexing spatial information; Patricia-
Hypercube Tree (PH-tree) [30], a tree structure for indexing
multidimensional data; and BB-Tree [43, 74], a k-ary search
tree for multidimensional range queries. Since PH-Tree, R*-
Tree, and BB-Tree do not natively support data point lookups
given primary key (PH-Tree and BB-Tree instead support
primary key lookups given data point), we perform a single-
attribute search for the primary key attribute.

Setup. We used a Cloudlab [75] cluster of 15 machines — 5
for hosting the storage system, and 10 hosting clients. Our
setup ensures that the entirety of the dataset and the secondary
indexes can fit in memory among the storage servers for all
compared systems. Each machines has 10-core 2.4GHz Intel
E5-2640v4 processors, 64GB of memory and 10Gbps NIC.

5.1 Performance for Real-world Applications
We evaluate TRINITY for real-world use cases in multi-attribute
search, point queries, and storage footprint. We also con-
ducted evaluations with mixed query workloads and provided
them in the Appendix for completeness.

5.1.1 Multi-attribute Search As a system that is specif-
ically designed to support efficient multi-attribute search,
TRINITY significantly outperforms compared systems (Fig-
ure 5), consistently achieving sub-second latency for queries
of varying nature (Table 2). Across three datasets, TRINITY
achieves on average 7.2 − 15.8× lower latency than Click-
House, 7.3 − 10.9× lower latency than TimescaleDB, and
17.8− 59.6× lower latency than Aerospike. Figure 5(d) shows

TRINITY: A Fast Compressed Multi-attribute Data Store EuroSys ’24, April 22–25, 2024, Athens, Greece

TPC-H GitHub
Events

NYC
Taxi

0

500

1000

1500

Th
ro

ug
hp

ut
 (k

pt
s/

se
c)

Trinity
ClickHouse

Aerospike
TimescaleDB

(a) Inserts

TPC-H GitHub
Events

NYC
Taxi

0

1000

2000

3000

4000

Th
ro

ug
hp

ut
 (k

pt
s/

se
c)

Trinity
ClickHouse

Aerospike
TimescaleDB

(b) Lookups

TPC-H GitHub
Events

NYC
Taxi

0

100

200

St
or

ag
e

(G
B)

Trinity
ClickHouse

Aerospike
TimescaleDB

(c) Storage footprint
Fig. 6. Point query throughput (§5.1.2) and Storage footprint (§5.1.3).

that TRINITY’s search throughput is 2−5 orders of magnitude
higher than compared systems. TRINITY’s query efficiency
stems from its multi-dimensional MDTRIE index design that
can query all attributes simultaneously. TRINITY leverages
both the query search boundary and data distribution within
the data shard to speed up the query using Algorithm 1.

The multi-attribute query performance for compared sys-
tems offers insights into how alternative designs handle such
queries. As an OLAP columnar store, ClickHouse stores val-
ues for each attribute in a separate sorted and compressed col-
umn. It supports multi-attribute queries via vectorized scans
across the compressed columns to filter out irrelevant results.
However, ClickHouse must scan through many irrelevant re-
sults to eliminate them. As with all columnar storage formats,
it must reconstruct records corresponding to search results via
expensive scans through multiple columns, further exacerbat-
ing query latencies. On the other hand, Aerospike is a NoSQL
store that maintains an index for every queried attribute. How-
ever, to perform multi-attribute queries, it only leverages a
single, most selective user-specified attribute index to retain
matching records for that attribute and scans through these
records to eliminate irrelevant results for other attributes. Al-
though retrieving records is more efficient in Aerospike, with-
out the optimized vectorization offered by columnar repre-
sentation, expensive scans in Aerospike result in significantly
higher query latencies. Finally, TimescaleDB, a time-series
database based on PostgreSQL, also maintains an index for
every queried attribute and performs multi-attribute queries
by finding the intersection across individual attribute-index
searches. This approach still requires eliminating many irrele-
vant results, resulting in high search latencies.

We also make a couple of interesting application-specific
observations. First, for the first three query templates (GQ1,
GQ2, GQ3) in the GitHub analysis use-case, ClickHouse
observes significantly better performance than Aerospike and
TimescaleDB. This is because the queried attributes in these
queries (e.g., number of stars, forks, and issues) assume val-
ues heavily skewed towards a small set of unique numbers
(typically zero or one), which ClickHouse can represent in
its sorted and compressed columnar representation efficiently.
Moreover, its vectorized scans are particularly well suited to
such skewed value distributions and can significantly outper-
form index-based scans/joins.

TimescaleDB, on the other hand, outperforms ClickHouse
on the fourth query template (GQ4) that accesses uniformly-
distributed timestamp attributes — TimescaleDB’s hyperta-
bles provide automatic data partitioning across timestamp
fields for more performant time-series-based queries. Second,
the query performance for all compared systems tends to vary
significantly across templates in the taxi traffic analytics use
case. This is because the NYC Taxi dataset’s attributes have
significant variance in value distribution and selectivity, and
often, the dataset is quite sparse.

5.1.2 Point Queries We next focus on the performance for
point queries; Figures 6(a) and 6(b) show insertion and lookup
throughput across datasets. TRINITY outperforms ClickHouse
(∼ 52.5× for inserts, ∼ 30.2× for lookups) and TimescaleDB
(∼ 7.9× for inserts, ∼ 1.7× for lookups), while is slower than
Aerospike (within 1.27× for inserts, 4.1× for lookups) — a
NoSQL store optimized for point queries.

While inserts require ClickHouse to update multiple columns
and relevant metadata, lookups require reconstructing records
via multiple random accesses across these columns. Click-
House’s low point query throughput issue is well known and
noted by ClickHouse maintainers [76]; our results confirm
this issue. TimescaleDB observes lower insert throughput
since each insert requires updating multiple attribute indexes
along with the raw data; its lookup throughput, on the other
hand, is comparable to TRINITY’s since it can leverage its
primary key index to facilitate efficient lookups. TRINITY
achieves a desirably high point query throughput due to its
space- and performance-efficient primary key index embed-
ded within the MDTRIE structure (§3.4).

Aerospike’s relatively higher throughput is expected: as a
NoSQL store, it is optimized to support point lookups and
inserts. In particular, its raw record data representations and
primary key index fit completely in DRAM, and both inserts
and lookups require only a couple of memory accesses to
the primary key index and the raw data itself. In contrast,
TRINITY’s succinct trie representation requires additional
non-trivial work in traversing the tree and decompressing
the path to retrieve or insert the relevant record. We believe
that a point query throughput lower than optimized NoSQL
stores (but higher than others) while achieving a significantly
better storage footprint (§5.1.3) and better performance for
multi-attribute queries is a reasonable tradeoff for TRINITY.

EuroSys ’24, April 22–25, 2024, Athens, Greece Ziming Mao, Kiran Srinivasan, and Anurag Khandelwal

5.1.3 Storage Footprint TRINITY observes low storage
footprint (Figure 6(c)): 6.6 − 15.1× lower than Aerospike and
4.8 − 12.7× than TimescaleDB across the various datasets.
These storage improvements are due to MDTRIE’s succinct
representation enabled by various optimizations outlined in
§3.2. TimescaleDB and Aerospike must store both the dataset
and large indexes to accelerate query execution, which can
incur overhead multiple times the size of the raw dataset, e.g.,
35GB→ 249GB for Aerospike on GitHub Events dataset.

ClickHouse has a slightly lower (∼ 1.4×) storage foot-
print than TRINITY, owing to ClickHouse’s lz4-compressed
columnar representation. Moreover, ClickHouse does not sup-
port secondary range indexes, relying solely on vectorized
scans for query execution, further reducing its storage over-
heads. This, however, comes at the cost of performance for
multi-attribute queries (discussed in §5.1.1) and point queries
(discussed in §5.1.2). We believe that a slight increase in stor-
age overhead for significantly improved query performance
is a reasonable tradeoff for TRINITY’s target applications.

5.2 Evaluating MDTRIE

We evaluate MDTRIE against state-of-the-art multi-attribute
data structures, namely R*-Tree [73, 77], Patricia-Hypercube
Tree (PH-Tree) [30], and BB-Tree [43, 74]. To evaluate them,
we replace MDTRIE with the corresponding data structure in
TRINITY. We defer a sensitivity analysis to the Appendix for
brevity.

Multi-attribute search (Figure 7(a)). To ensure that our
results depend only on the data structure (and not the query
type), we generate 1𝑘 multi-attribute queries spanning all
attributes with 0.1% query selectivity. Across various datasets,
MDTRIE observes 1.8− 17.7×, 5.0− 12.8×, 1.1− 11.6× lower
average latency compared to PH-Tree, R*-Tree and BB-Tree
respectively.

Similar to MDTRIE, PH-Tree encodes attributes with origi-
nal Morton codes for each record in a tree structure. However,
unlike MDTRIE, it does not employ a succinct data representa-
tion, generalized Morton codes, or collapsed nodes for sparse
datasets. Additionally, its query algorithm elides optimiza-
tions we outlined in §3.3, relying on much slower pointer-
based traversals rather than bitwise instructions that skip un-
populated nodes. As such, MDTRIE achieves significantly
more efficient query execution compared to the PH-Tree.

R*-Trees group n-dimensional points in close proximity
into mimimum bounding rectangles, and organizes these rect-
angles hierarchically in a tree. At the leaf, these rectangles
encapsulate a single point, while nodes at higher layers rep-
resent aggregates of multiple points in larger bounding rect-
angles. The search algorithm traverses down the tree and
finds rectangles that intersect with the search space. The tree
structure itself heavily employs pointer-based links. R*-Tree
suffers from similar issues: the search algorithm tends to visit
more nodes than MDTRIE, is less cache efficient due to its

larger storage footprint, and does not enjoy fast traversals via
bitwise instructions, resulting in relatively slower searches.

BB-Tree constructs an almost balanced k-ary search tree
with efficient scans in main memory. Its inner search tree
(IST) is linearized in breadth-first order and stored in a cache-
optimized array. Data objects are stored in special leaf nodes
(“Bubble Bucket” or BB) that can store multiple data points.
While BB-Tree picks a delimiter dimension at every level,
MDTRIE uses Morton code, where the traversal of each level
prunes all dimensions simultaneously. As a result, BB-Tree
observes higher range query latency.

Point queries (Figure 7(c), 7(d)). MDTRIE’s insertion la-
tency is on average 1.28× lower than R*-Tree’s, albeit 1.19×
higher than PH-Tree’s (Figure 7(c)). While MDTRIE’s me-
dian latency is 1.22× higher than BB-Tree’s, BB-Tree’s aver-
age latency is 3× higher due to its need to rebuild the inner
search tree after a series of insertions. R*-Tree employs a
relatively sophisticated insertion algorithm that computes ef-
ficient bounding rectangles and often requires revising the
splitting of rectangles during insertion for better spatial lo-
cality. This results in its relatively higher insertion overhead,
with particularly high variance depending on the number of
split revisions required; in contrast, the use of Morton codes
directly affords spatial locality in both PH-Tree and MDTRIE
without requiring such recomputations. PH-Tree’s lower in-
sertion latency relative to MDTRIE is expected: PH-Tree uses
pointers to represent its tree structure, compared to MDTRIE’s
succinct representation. While this permits faster updates, it
compromises storage efficiency. Similarly, BB-Tree observes
faster median insertion latency as it links its inner search
tree to leaf nodes (bubble buckets) with pointers. We note
that MDTRIE can have slightly higher tail latencies for in-
serts since it occasionally requires splitting an overflowing
treeblock (§3.2). Prioritizing large gains in space-efficiency
over a slight reduction in insert latency is a conscious design
choice in MDTRIE.

MDTRIE achieves good lookup performance (Figure 7(d)),
with lower latency across datasets compared to R*-Tree and
BB-Tree. While PH-Tree’s performance is slightly better than
MDTRIE for the GitHub Events and NYC Taxi datasets, it is
16× worse for the TPC-H dataset, because tree-based encod-
ing of the TPC-H dataset has much more balanced distribution
of children nodes, i.e., all nodes have a moderate number of
children (instead of mostly sparse sub-trees with some dense
nodes). This forces PH-Tree to search many more children by
iterating over their pointers at each node, resulting in higher
lookup latency. As BB-Tree is optimized for full data point
lookup (find the primary key given the data point) and does
not natively support lookup given primary key, it uses slower
range query on a single dimension for primary key lookup.
MDTRIE, on the other hand, employs its efficient bitwise
instructions and embedded primary key index to traverse up
the trie and reconstruct the data point much faster.

TRINITY: A Fast Compressed Multi-attribute Data Store EuroSys ’24, April 22–25, 2024, Athens, Greece

TPC-H GitHub
Events

NYC
Taxi

0

10

20

30

40

Se
ar

ch
 L

at
en

cy
 (s

)

MdTrie
PH-Tree

R*-Tree
BB-Tree

(a) Multi-attribute search

TPC-H GitHub
Events

NYC
Taxi

0

100

200

300

St
or

ag
e

(b
yt

es
/p

t)

MdTrie
PH-Tree

R*-Tree
BB-Tree

(b) Storage Footprint

TPC-H GitHub
Events

NYC
Taxi

102

103

In
se

rt
La

te
nc

y
(u

s/
pt

)

MdTrie
PH-Tree

R*-Tree
BB-Tree

(c) Insert

TPC-H GitHub
Events

NYC
Taxi

103

105

Lo
ok

up
 L

at
en

cy
 (u

s/
pt

)

MdTrie
PH-Tree

R*-Tree
BB-Tree

(d) Lookup

Fig. 7. Evaluating MDTRIE (§5.2). For box plots, the red line marks the median, the box marks 25𝑡ℎ and 75𝑡ℎ percentiles, the whiskers show
10𝑡ℎ and 90𝑡ℎ percentiles, and the inverted triangle marks the mean. The y-axis for (c) and (d) is in log scale.

TPC-H GitHub
Events

NYC
Taxi

101

102

103

St
or

ag
e

(b
yt

es
/p

t)

B +CN +GM +SM

(a) Storage

TPC-H GitHub
Events

NYC
Taxi

102

103

In
se

rt
La

te
nc

y
(u

s/
pt

)

B +CN +GM +SM

(b) Insertion

TPC-H GitHub
Events

NYC
Taxi

102

103

Lo
ok

up
 L

at
en

cy
 (u

s/
pt

)

B +CN +GM +SM

(c) Lookup

TPC-H GitHub
Events

NYC
Taxi

101

103

Se
ar

ch
 L

at
en

cy
 (u

s/
pt

)

B +CN +GM +SM

(d) Range Query

Fig. 8. Contributions of optimizations on TRINITY performance. B denotes the baseline, +CN adds collapsed nodes, +GM adds generalized
Morton code, +SM adds staggered Morton code. Note that the y-axis is in log scale.

Storage overheads (Figure 7(b)). MDTRIE observes 3.9 −
14.5×, 2.1 − 7.9×, and 3.0 − 12.7× lower storage footprint
compared to PH-Tree, R*-Tree, and BB-Tree, respectively.
This is due to MDTRIE’s optimized succinct representation,
in contrast to pointer-based representations in other data struc-
tures.

Contributions of optimizations (Figure 8(a) – 8(d)). Each
of TRINITY’s optimizations (§3.2) contribute to reducing its
storage footprint. The collapsed node optimization yields 2.7−
13.9× reduction, with further reductions due to Generalized
Morton encoding (1.18 − 21.4×). As noted in §3.2, Staggered
Morton encoding’s improvements are dataset-dependent. In
the GitHub Events dataset, all but one attribute has the same
bit width, leaving no room for improvement with staggering.
The NYC Taxi and TPC-H datasets have many attributes with
varying bit-widths, yielding an additional 25.5% and 12.9%
reduction, respectively. MDTRIE’s storage optimizations also
improve query performance, since storing fewer bits per trie
node speeds up traversal and improves cache efficiency. The
collapsed node optimization speeds up range queries by 2.2 −
9.5×, while generalized Morton encoding further adds 2.5 −
56× improvement across different datasets. Staggered Morton
encoding reduces query latency even further by 65% on the
NYC Taxi dataset. We observe similar improvements for point
queries: collapsed nodes speed up point queries by 1.33−2.2×,
while generalized Morton codes further speed it up by 6.6×
on the NYC Taxi dataset. Staggered Morton encoding further
improves point query latency by up to 21%.

Effect of number of attributes. We modify the number of
dimensions in the TPC-H dataset by dropping or replicating
some of its existing dimensions. We support large data di-
mensionality (> 16) using the dimension slicing approach
outlined in §5.1.3, i.e., the set of dimensions is sliced and
encoded across multiple MDTRIE instances. We configure
each MDTRIE slice to cover 8 dimensions. Figure 9 shows
that TRINITY’s storage footprint and point latency increase
linearly as the number of attributes is increased from 4 to 128.
The large variances in query latency are due to the random-
ness in the query generation process. Specifically, queries
over 4 dimensions are less selective (fewer dimensions to
filter the dataset) and return, on average, significantly more
points, leading to a much smaller amortized query latency per
point.

Effect of Treeblock sizes. We study the impact of varying the
treeblock size in MDTRIE from 128 to 1024 on query latency
and storage overhead (Figure 10). We find that, as expected
(§5.1.3), insertion and lookup latency gradually increases as
the treeblock size increases, while the storage size decreases
as we increase the treeblock size.

6 Discussion and Future Work

Variable-length data types. Since most applications for
machine-generated data are satisfied with searches on floating
points up to a few digits (e.g., geo-data, timestamps) and fixed-
length strings (e.g., message type, log severity), fixed-length
attributes do not limit our use cases. High-precision floating

EuroSys ’24, April 22–25, 2024, Athens, Greece Ziming Mao, Kiran Srinivasan, and Anurag Khandelwal

4 8 16 32 64 128
Dimensions

102

103

by
te
s/
pt

MdTrie Uncompressed

(a) Storage vs #Dimensions

4 8 16 32 64 128
Dimensions

0

250

500

750

1000

Qu
er

y
La

te
nc

y
(u

s/
pt

)
(b) Search latency vs #Dimensions

4 8 16 32 64 128
Dimensions

0

200

400

600

800

In
se

rt
La

te
nc

y
(u

s/
pt

)

(c) Insertion latency vs. #Dimensions

4 8 16 32 64 128
Dimensions

0

200

400

600

800

Lo
ok

up
 L

at
en

cy
 (u

s/
pt

)

(d) Lookup latency vs. #Dimensions

Fig. 9. Effect of number of dimensions on TRINITY performance (5.2). The x-axis is in log-scale. The y-axis for (a) is in log-scale.

128 256 512 1024
Treeblock Size

0

20

40

60

80

by
te

s/
pt

(a) Storage vs. Treeblock size

128 256 512 1024
Treeblock Size

0

1

2

3

Qu
er

y
La

te
nc

y
(u

s/
pt

)

(b) Query latency vs. Treeblock size

128 256 512 1024
Treeblock Size

0

50

100

150

In
se

rt
La

te
nc

y
(u

s/
pt

)
(c) Insert latency vs. Treeblock size

128 256 512 1024
Treeblock Size

0

50

100

150

200

Lo
ok

up
 L

at
en

cy
 (u

s/
pt

)

(d) Lookup latency vs. Treeblock size

Fig. 10. Effect of Treeblock size on TRINITY performance (5.2). The x-axis is in log-scale.

point numbers (e.g., FP32) can be supported by encoding ex-
ponent and fractional components as two separate attributes.
Encoding variable-length strings remains an open problem:
while order-preserving string compression (e.g., HOPE [78])
provides a fixed-width order-preserving encoding for variable-
length strings, they require knowing the entire dataset a priori.
TRINITY can also store the fixed-length prefix of variable-
length strings in MDTRIE (for searchability) while storing
the complete strings on persistent storage.

Space-filling curves. Prior surveys [79] find Morton and
Hilbert codes to be the most suitable encoding schemes that
preserve spatial locality. While Hilbert codes have impres-
sive theoretical clustering properties [80], MDTRIE employs
Morton codes mainly because knowing the search bound-
ary provides no straightforward benefit in pruning the search
space for Hilbert codes [55]. Realizing efficient algorithms
for Hilbert code variant of MDTRIE is an exciting area of
future work. Space-filling curves have also been used in other
aspects of data storage, notably, HyperDex [81] maps multi-
attribute objects to multi-dimensional hyperspace and assigns
objects to servers that own partitions of the hyperspace. While
HyperDex supports distributed multi-attribute search, it is pri-
marily an approach for partitioning data across servers and is
complementary to TRINITY.

Depth-first versus level ordering. Depth-first [59] and level
ordering [43, 58] are two ways of laying out trie nodes onto
a compact bit vector representation. Level-ordering stores
nodes by level and supports edge traversals in constant time.
While depth-first ordering does not support constant-time
edge traversals, it does enable greater cache- and update-
efficiency [61], which makes it the basis of our choice in

MDTRIE. While prior works have explored level-ordered
trie in a single dimension [29], we leave the adaptation of
level-ordered tries to multi-dimensional data to future work.

7 Conclusion
We have presented TRINITY, a compressed in-memory data
store that simultaneously facilitates query-efficiency across
large volumes of multi-attribute records. TRINITY achieves
this using a novel dynamic, succinct, multi-dimensional data
structure MDTRIE. Our evaluation of TRINITY across real-
world use cases shows that TRINITY supports significantly
faster multi-attribute searches, while enabling comparable or
lower storage footprint and comparable or higher point query
throughput relative to state-of-the-art systems.

Acknowledgement
We thank our shepherd, André Brinkmann, and anonymous
EuroSys reviewers for their valuable comments and insightful
feedback. This work is supported in part by NSF Awards
2047220, 2147946, and a NetApp Faculty Fellowship, as well
as gifts from Accenture, AMD, Anyscale, Google, IBM, In-
tel, Microsoft, Mohamed Bin Zayed University of Artificial
Intelligence, Samsung SDS, Uber, and VMware.

References
[1] Jianqing Fan, Fang Han, and Han Liu. Challenges of big data analysis.

National science review, 1(2):293–314, 2014.
[2] Michael P Andersen and David E. Culler. Btrdb: Optimizing storage

system design for timeseries processing. In FAST, pages 39–52, 2016.
[3] Emma M. Stewart, Anna Liao, and Ciaran Roberts. Open 𝜇pmu: A real

world reference distribution micro-phasor measurement unit data set
for research and application development. IEEE, 2016.

[4] Henggang Cui, Kimberly Keeton, Indrajit Roy, Krishnamurthy
Viswanathan, and Gregory R. Ganger. Using data transformations

TRINITY: A Fast Compressed Multi-attribute Data Store EuroSys ’24, April 22–25, 2024, Athens, Greece

for low-latency time series analysis. In ACM SoCC, pages 395–407,
2015.

[5] Galen Reeves, Jie Liu, Suman Nath, and Feng Zhao. Managing mas-
sive time series streams with multi-scale compressed trickles. VLDB,
2(1):97–108, 2009.

[6] Lior Abraham, John Allen, Oleksandr Barykin, Vinayak Borkar,
Bhuwan Chopra, Ciprian Gerea, Daniel Merl, Josh Metzler, David
Reiss, Subbu Subramanian, Janet L. Wiener, and Okay Zed. Scuba:
Diving into data at facebook. VLDB, 6(11):1057–1067, 2013.

[7] Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro,
Qi Huang, Justin Meza, and Kaushik Veeraraghavan. Gorilla: A fast,
scalable, in-memory time series database. VLDB, 8(12):1816–1827,
2015.

[8] Google Stackdriver. https : / / cloud . google . com /
stackdriver/.

[9] Amazon CloudWatch. https : / / aws . amazon . com /
cloudwatch/.

[10] Anurag Khandelwal, Rachit Agarwal, and Ion Stoica. Confluo: Dis-
tributed monitoring and diagnosis stack for high-speed networks. In
NSDI, pages 421–436, 2019.

[11] M. Moshref, M. Yu, R. Govindan, and A. Vahdat. Trumpet: Timely and
Precise Triggers in Data Centers. In SIGCOMM, 2016.

[12] P. Tammana, R. Agarwal, and M. Lee. Simplifying Datacenter Network
Debugging with PathDump. In OSDI, 2016.

[13] NYC Taxi Download. https://tinyurl.com/bdk9k5uk.
[14] Uber’s Big Data Platform: 100+ Petabytes with Minute La-

tency. https://www.uber.com/blog/uber-big-data-
platform/.

[15] Uber Freight Carrier Metrics with Near-Real-Time Analytics. https:
//tinyurl.com/bdj68hd9.

[16] Introducing AresDB: Uber’s GPU-Powered Open Source, Real-time
Analytics Engine. https://www.uber.com/blog/aresdb/.

[17] Haitao Yuan and Guoliang Li. A survey of traffic prediction: from
spatio-temporal data to intelligent transportation. Data Science and
Engineering, 6:63–85, 2021.

[18] Andreas Papadopoulos and Dimitrios Katsaros. A-tree: Distributed
indexing of multidimensional data for cloud computing environments.
In IEEE, pages 407–414, 2011.

[19] Yu Hua, Dan Feng, and Ting Xie. Multi-dimensional range query for
data management using bloom filters. In IEEE, pages 428–433, 2007.

[20] Siqiang Luo, Subarna Chatterjee, Rafael Ketsetsidis, Niv Dayan, Wilson
Qin, and Stratos Idreos. Rosetta: A robust space-time optimized range
filter for key-value stores. In SIGMOD, pages 2071–2086, 2020.

[21] Rudolf Bayer and Volker Markl. The ub-tree: Performance of multidi-
mensional range queries. Technical report, 1998.

[22] Jon Louis Bentley. Multidimensional binary search trees used for
associative searching. Communications of the ACM, 18(9):509–517,
1975.

[23] Antonin Guttman. R-trees: A dynamic index structure for spatial
searching. SIGMOD ’84, page 47–57, New York, NY, USA, 1984.

[24] Xiangyu Zhang, Jing Ai, Zhongyuan Wang, Jiaheng Lu, and Xiaofeng
Meng. An efficient multi-dimensional index for cloud data manage-
ment. In Proceedings of the first international workshop on Cloud data
management, pages 17–24, 2009.

[25] Huanchen Zhang, David G Andersen, Andrew Pavlo, Michael Kamin-
sky, Lin Ma, and Rui Shen. Reducing the storage overhead of main-
memory oltp databases with hybrid indexes. In Proceedings of the 2016
International Conference on Management of Data, pages 1567–1581,
2016.

[26] Rachit Agarwal, Anurag Khandelwal, and Ion Stoica. Succinct: En-
abling queries on compressed data. In NSDI, pages 337–350, 2015.

[27] Anurag Khandelwal, Rachit Agarwal, and Ion Stoica. Blowfish: Dy-
namic storage-performance tradeoff in data stores. In NSDI, pages
485–500, 2016.

[28] Anurag Khandelwal, Zongheng Yang, Evan Ye, Rachit Agarwal, and
Ion Stoica. Zipg: A memory-efficient graph store for interactive queries.
In SIGMOD, pages 1149–1164, 2017.

[29] Huanchen Zhang, Hyeontaek Lim, Viktor Leis, David G Andersen,
Michael Kaminsky, Kimberly Keeton, and Andrew Pavlo. Surf: Prac-
tical range query filtering with fast succinct tries. In SIGMOD, pages
323–336, 2018.

[30] Tilmann Zäschke, Christoph Zimmerli, and Moira C Norrie. The ph-
tree: a space-efficient storage structure and multi-dimensional index. In
SIGMOD, pages 397–408, 2014.

[31] Guy Joseph Jacobson. Succinct Static Data Structures. PhD thesis,
CMU, 1988.

[32] J. A. Orenstein and T. H. Merrett. A class of data structures for as-
sociative searching. PODS ’84, page 181–190, New York, NY, USA,
1984.

[33] Steven M Rubin and Turner Whitted. A 3-dimensional representation
for fast rendering of complex scenes. In PACMCGIT, pages 110–116,
1980.

[34] MongoDB. http://www.mongodb.org.
[35] Avinash Lakshman and Prashant Malik. Cassandra: A Decentralized

Structured Storage System. SIGOPS, 44(2):35–40, 2010.
[36] Elasticsearch. http://www.elasticsearch.org.
[37] Swaminathan Sivasubramanian. Amazon dynamoDB: A Seamlessly

Scalable Non-relational Database Service. In SIGMOD, 2012.
[38] Apache HBase. https://hbase.apache.org/.
[39] SingleStore: The Database for the Data-Intensive Era. https://www.
singlestore.com/.

[40] Peter Boncz, Torsten Grust, Maurice van Keulen, Stefan Manegold,
Jan Rittinger, and Jens Teubner. MonetDB/XQuery: A Fast XQuery
Processor Powered by a Relational Engine. In SIGMOD, 2006.

[41] SAP HANA. http://www.saphana.com/.
[42] Vikram Nathan, Jialin Ding, Mohammad Alizadeh, and Tim Kraska.

Learning multi-dimensional indexes. SIGMOD ’20, page 985–1000,
New York, NY, USA, 2020.

[43] Stefan Sprenger, Patrick Schäfer, and Ulf Leser. Bb-tree: A main-
memory index structure for multidimensional range queries. In 2019
IEEE 35th International Conference on Data Engineering (ICDE),
pages 1566–1569. IEEE, 2019.

[44] Songrui Wu, Qi Li, Guoliang Li, Dong Yuan, Xingliang Yuan, and
Cong Wang. Servedb: Secure, verifiable, and efficient range queries on
outsourced database. In 2019 IEEE 35th International Conference on
Data Engineering (ICDE), pages 626–637. IEEE, 2019.

[45] Fangjin Yang, Eric Tschetter, Xavier Léauté, Nelson Ray, Gian Mer-
lino, and Deep Ganguli. Druid: A real-time analytical data store. In
Proceedings of the 2014 ACM SIGMOD international conference on
Management of data, pages 157–168, 2014.

[46] TimescaleDB: SQL made scalable for time-series data. https://
tinyurl.com/e9r9an3y.

[47] V Srinivasan, Brian Bulkowski, Wei-Ling Chu, Sunil Sayyaparaju, An-
drew Gooding, Rajkumar Iyer, Ashish Shinde, and Thomas Lopatic.
Aerospike: Architecture of a real-time operational dbms. VLDB,
9(13):1389–1400, 2016.

[48] Jin-Yi Cai, Venkatesan T. Chakaravarthy, Raghav Kaushik, and Jef-
frey F. Naughton. On the complexity of join predicates. PODS ’01,
page 207–214, New York, NY, USA, 2001.

[49] Shumo Chu, Magdalena Balazinska, and Dan Suciu. From theory to
practice: Efficient join query evaluation in a parallel database system.
SIGMOD ’15, page 63–78, New York, NY, USA, 2015.

[50] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do,
Yinan Li, Hantian Zhang, Badrish Chandramouli, Johannes Gehrke,
Donald Kossmann, et al. Alex: an updatable adaptive learned index. In
Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, pages 969–984, 2020.

https://cloud.google.com/stackdriver/
https://cloud.google.com/stackdriver/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/
https://tinyurl.com/bdk9k5uk
https://www.uber.com/blog/uber-big-data-platform/
https://www.uber.com/blog/uber-big-data-platform/
https://tinyurl.com/bdj68hd9
https://tinyurl.com/bdj68hd9
https://www.uber.com/blog/aresdb/
http://www.mongodb.org
http://www.elasticsearch.org
https://hbase.apache.org/
https://www.singlestore.com/
https://www.singlestore.com/
http://www.saphana.com/
https://tinyurl.com/e9r9an3y
https://tinyurl.com/e9r9an3y

EuroSys ’24, April 22–25, 2024, Athens, Greece Ziming Mao, Kiran Srinivasan, and Anurag Khandelwal

[51] Lars Arge, Mark De Berg, Herman Haverkort, and Ke Yi. The priority
r-tree: A practically efficient and worst-case optimal r-tree. ACM
Transactions on Algorithms (TALG), 4(1):1–30, 2008.

[52] Zongheng Yang, Badrish Chandramouli, Chi Wang, Johannes Gehrke,
Yinan Li, Umar Farooq Minhas, Per-Åke Larson, Donald Kossmann,
and Rajeev Acharya. Qd-tree: Learning data layouts for big data
analytics. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, pages 193–208, 2020.

[53] ClickHouse. https://clickhouse.com/.
[54] Jialin Ding, Vikram Nathan, Mohammad Alizadeh, and Tim Kraska.

Tsunami: A learned multi-dimensional index for correlated data and
skewed workloads. VLDB, 2020.

[55] Jonathan K. Lawder and Peter J. H. King. Querying multi-dimensional
data indexed using the hilbert space-filling curve. ACM Sigmod Record,
30(1):19–24, 2001.

[56] Peter Kirschenhofer, Helmut Prodinger, and Wojciech Szpankowski.
Multidimensional digital searching and some new parameters in tries.
International Journal of Foundations of Computer Science, 4(01):69–
84, 1993.

[57] Bradford G Nickerson and Qingxiu Shi. On k-d range search with
patricia tries. SIAM Journal on Computing, 37(5):1373–1386, 2008.

[58] Naila Rahman, Rajeev Raman, et al. Engineering the louds succinct
tree representation. In International Workshop on Experimental and
Efficient Algorithms, pages 134–145. Springer, 2006.

[59] David Benoit, Erik D Demaine, J Ian Munro, Rajeev Raman, Venkatesh
Raman, and S Srinivasa Rao. Representing trees of higher degree.
Algorithmica, 43(4):275–292, 2005.

[60] Diego Arroyuelo, Rodrigo Cánovas, Gonzalo Navarro, and Kunihiko
Sadakane. Succinct trees in practice. In 2010 ALENEX, pages 84–97.
SIAM, 2010.

[61] Diego Arroyuelo, Guillermo de Bernardo, Travis Gagie, and Gonzalo
Navarro. Faster dynamic compressed d-ary relations. In International
Symposium on String Processing and Information Retrieval, pages
419–433. Springer, 2019.

[62] David A White and Ramesh Jain. Similarity indexing with the ss-tree.
In IEEE, pages 516–523, 1996.

[63] Intrinsics for Bitwise Logical Operations. https://tinyurl.
com/vjxcnh52.

[64] Delta Encoding. http://en.wikipedia.org/wiki/Delta_
encoding.

[65] Redis. http://www.redis.io.
[66] Robert Escriva, Bernard Wong, and Emin Gün Sirer. HyperDex: A

Distributed, Searchable Key-value Store. In ACM Conference on Ap-
plications, Technologies, Architectures, and Protocols for Computer
Communication (SIGCOMM), 2012.

[67] TPC-H Download. http://www.tpc.org/tpch/.
[68] Github Events Download. https://tinyurl.com/yme6zp7r.
[69] A ride through NYC: SQL queries visualization. https://
tinyurl.com/2s3j3ce9.

[70] New York City Taxi and For-Hire Vehicle Data. https://tinyurl.
com/bdk9k5uk.

[71] Introduction to IoT: New York City Taxicabs. https://tinyurl.
com/4fnbsx63.

[72] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. Benchmarking Cloud Serving Systems with YCSB.
In ACM SoCC, 2010.

[73] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard
Seeger. The r*-tree: An efficient and robust access method for points
and rectangles. In SIGMOD, pages 322–331, 1990.

[74] BB-Tree: C++ implementation. https : / / github . com /
flippingbits/bb-tree.

[75] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong,
Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David John-
son, Kirk Webb, Aditya Akella, Kuangching Wang, Glenn Ricart,

Larry Landweber, Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. The design and operation of
CloudLab. In USENIX ATC 19, pages 1–14, Renton, WA, July 2019.

[76] ClickHouse Low Throughput Github Issue. https://tinyurl.
com/2p9fyj3b.

[77] R*-Tree: C++ implementation. https://tinyurl.com/
5f4n4njn.

[78] Huanchen Zhang, Xiaoxuan Liu, David G. Andersen, Michael Kamin-
sky, Kimberly Keeton, and Andrew Pavlo. Order-preserving key com-
pression for in-memory search trees. SIGMOD ’20, page 1601–1615,
New York, NY, USA, 2020.

[79] David J Abel and David M Mark. A comparative analysis of some
two-dimensional orderings. International Journal of Geographical
Information Systems, 4(1):21–31, 1990.

[80] Bongki Moon, Hosagrahar V Jagadish, Christos Faloutsos, and Joel H.
Saltz. Analysis of the clustering properties of the hilbert space-filling
curve. IEEE, 13(1):124–141, 2001.

[81] Robert Escriva, Bernard Wong, and Emin Gün Sirer. Hyperdex: A
distributed, searchable key-value store. In Proceedings of the ACM SIG-
COMM 2012 conference on Applications, technologies, architectures,
and protocols for computer communication, pages 25–36, 2012.

https://clickhouse.com/
https://tinyurl.com/vjxcnh52
https://tinyurl.com/vjxcnh52
http://en.wikipedia.org/wiki/Delta_encoding
http://en.wikipedia.org/wiki/Delta_encoding
http://www.redis.io
http://www.tpc.org/tpch/
https://tinyurl.com/yme6zp7r
https://tinyurl.com/2s3j3ce9
https://tinyurl.com/2s3j3ce9
https://tinyurl.com/bdk9k5uk
https://tinyurl.com/bdk9k5uk
https://tinyurl.com/4fnbsx63
https://tinyurl.com/4fnbsx63
https://github.com/flippingbits/bb-tree
https://github.com/flippingbits/bb-tree
https://tinyurl.com/2p9fyj3b
https://tinyurl.com/2p9fyj3b
https://tinyurl.com/5f4n4njn
https://tinyurl.com/5f4n4njn

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Multi-Attribute Data Storage
	2.2 Need for Trinity
	2.3 The Trinity Approach

	3 MdTrie: Encoding Multi-Attribute Data
	3.1 Building Blocks
	3.2 MdTrie Layout
	3.3 Multi-dimensional Range Query
	3.4 Point Queries with Self-indexing

	4 Trinity: Design & Implementation
	4.1 System Interface
	4.2 System Implementation

	5 Evaluation
	5.1 Performance for Real-world Applications
	5.2 Evaluating MdTrie

	6 Discussion and Future Work
	7 Conclusion
	References

